

User Manual for the HE300GEN150

Option Card for
 GE Adjustable Frequency Drives (AF-300 G11 / P11 Series Drives)

First Edition
13 April 2000

PREFACE

This manual explains how to use the Horner APG HE300GEN150 option card.
Copyright (C) 2000 Horner APG, LLC., 640 North Sherman Drive Indianapolis, Indiana 46201. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior agreement and written permission of Horner APG, LLC.

All software described in this document or media is also copyrighted material subject to the terms and conditions of the Horner Software License Agreement.

Information in this document is subject to change without notice and does not represent a commitment on the part of Horner APG, LLC.

Genius, Series 90-30, and Logicmaster are trademarks of GE Fanuc Automation North America, Inc.
AF-300 G11 and AF-300 P11 are trademarks of General Electric.

For user manual updates, contact Horner APG, Technical Support Division, at (317) 916-4274 or visit our website at www.heapg.com.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

Horner APG, LLC.("HE-APG") warrants to the original purchaser that HE300GEN150 manufactured by HE-APG is free from defects in material and workmanship under normal use and service. The obligation of HE-APG under this warranty shall be limited to the repair or exchange of any part or parts which may prove defective under normal use and service within two (2) years from the date of manufacture or eighteen (18) months from the date of installation by the original purchaser whichever occurs first, such defect to be disclosed to the satisfaction of HE-APG after examination by HE-APG of the allegedly defective part or parts. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES AND HE-APG NEITHER ASSUMES, NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR HE-APG, ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF THIS HE300GEN150. THIS WARRANTY SHALL NOT APPLY TO THIS HE300GEN150 OR ANY PART THEREOF WHICH HAS BEEN SUBJECT TO ACCIDENT, NEGLIGENCE, ALTERATION, ABUSE, OR MISUSE. HE-APG MAKES NO WARRANTY WHATSOEVER IN RESPECT TO ACCESSORIES OR PARTS NOT SUPPLIED BY HE-APG. THE TERM "ORIGINAL PURCHASER", AS USED IN THIS WARRANTY, SHALL BE DEEMED TO MEAN THAT PERSON FOR WHOM THE HE300GEN150 IS ORIGINALLY INSTALLED. THIS WARRANTY SHALL APPLY ONLY WITHIN THE BOUNDARIES OF THE CONTINENTAL UNITED STATES.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or otherwise, shall HE-APG or its suppliers be liable of any special, consequential, incidental or penal damages including, but not limited to, loss of profit or revenues, loss of use of the products or any associated equipment, damage to associated equipment, cost of capital, cost of substitute products, facilities, services or replacement power, down time costs, or claims of original purchaser's customers for such damages.

To obtain warranty service, return the product to your distributor with a description of the problem, proof of purchase, post paid, insured and in a suitable package.

ABOUT PROGRAMMING EXAMPLES

Any example programs and program segments in this manual or provided on accompanying diskettes are included solely for illustrative purposes. Due to the many variables and requirements associated with any particular installation, Horner APG cannot assume responsibility or liability for actual use based on the examples and diagrams. It is the sole responsibility of the system designer utilizing HE300GEN150 to appropriately design the end system, to appropriately integrate the HE300GEN150 and to make safety provisions for the end equipment as is usual and customary in industrial applications as defined in any codes or standards which apply.

Note: The programming examples shown in this manual are for illustrative purposes only. Proper machine operation is the sole responsibility of the system integrator.

Table of Contents

PREFACE 3
LIMITED WARRANTY AND LIMITATION OF LIABILITY 4
ABOUT PROGRAMMING EXAMPLES4
CHAPTER 1: INTRODUCTION 7
1.1 Product Description 7
1.2 Genius Network Overview 7
1.3 Genius Network Architecture 8
1.4 Genius Communications Services 8
1.4.1 I/O Service 8
1.4.2 Global Data 8
1.4.3 Datagrams 9
1.5 Required References and Resources 9
CHAPTER 2: INSTALLATION 11
2.1 Installation Procedures for the Option Card (GEN150) 11
2.2 Genius Wiring 12
CHAPTER 3: OPTION CARD CONFIGURATION (USING AF-300 KEYPAD) 15
3.1 Keypad Functionality 15
3.2 Option Card Configuration Parameters 15
3.2.1 User Defined Parameters 16
3.3 Operation Configuration Parameters 18
3.3.1 Description of Parameter H3O 18
3.3.2 Description of Parameters 027 and o28 18
3.3.3 Network Loss 19
CHAPTER 4 : GENIUS BUS CONTROLLER CONFIGURATION 21
4.1 PLC Configuration 21
4.2 Series 90-70 Configuration 21
CHAPTER 5 : AF-300 DRIVE PARAMETERS 25
5.1 Drive Parameter Descriptions 25
5.2 Data Format Specification 32
Data format [6]: Decimal data (Positive, negative): Min. unit 0.01 32
CHAPTER 6 : DATAGRAM ACCESS 39
6.1 General 39
6.2 Write to Drive using Datagram 39
6.3 Read from Drive using Datagram 42
6.4 PLC Ladder Code 43
APPENDIX A: COMM_REQ COMMAND BLOCK DESCRIPTIONS 45

CHAPTER 1: INTRODUCTION

1.1 Product Description

The Horner APG option card (HE300GEN150) enables GE Adjustable Frequency Drives (models AF-300 G11 or P11) to reside directly on a Genius network. The option card is installed within the AF-300 G11 or P11 (AF-300) and provides drive control and data access capabilities to a PLC.

Note: For clarification purposes, the combination of the HE300GEN150 Option Card and the GE Drive (AF-300 G11 or P11) is referred to as "AF-300" throughout the manual.

1.2 Genius Network Overview

Genius is a high-speed, token passing network, which is used in many industrial applications. The network supports up to 32 devices with baud rates of up to 153.6 Kbaud . A wide variety of Genius devices exist, which can reside on the network ranging from intelligent I/O blocks to more sophisticated communications devices such as personal computers. In recent years a number of third party devices have emerged including operator interface units, valve manifolds, and RF tag readers.

Figure 1.1 - Typical Genius Network

In a typical industrial application (Figure 1.1), Genius devices are distributed throughout a fairly wide area, wired in a daisy chained fashion with a single shielded, twisted pair. The option card (GEN150) allows the AF-300G11/P11 drives to be distributed on the factory floor on the same twisted pair as the I/O blocks and other Genius devices. The option card provides a new level of PLC integration for the drives.

The physical nature of the Genius network can allow for great savings in wiring, as many discrete wires can be replaced with a single communications cable. This allows tasks such as starting, stopping, reversing, and changing speeds to be accomplished over the LAN. In addition, drive parameters and diagnostic data previously not available to the PLC are easily accessible.

1.3 Genius Network Architecture

The Genius network architecture is depicted in Figure 1.1. Normally, a GE Fanuc programmable controller runs the network through a PLC module called a Genius Bus Controller (GBC). Up to 32 devices are wired in a daisy chained fashion. Network devices support four communications terminals, Serial 1, Serial 2, Shield In and Shield Out. The network is terminated at each end with an appropriate terminating resistor.

Each device on the network (up to 32 devices) is assigned a Genius Bus Address ranging from 0 to 31 . Bus Controllers are typically assigned a Genius Bus Address of 31. In applications with redundant bus controllers, the backup bus controller is address 30 . Bus address 0 is normally reserved for the Genius Hand Held Monitor.

Among other tasks, the bus controller allows Genius I/O (including the drives) on the network to be mapped into PLC memory, monitoring inputs and controlling outputs. Intelligent, data intensive Genius devices also share their data with the PLC through communications with the bus controller.

1.4 Genius Communications Services

The option card allows the drive to reside directly on the Genius LAN providing drive control and data access capabilities to the PLC. There are three types of communications that can occur on the Genius LAN. These are I/O Services, Global Data, and Datagrams. The option card supports all three of these communications types.

1.4.1 I/O Service

I/O Service is the manner in which data is transferred to and from Genius I/O Blocks. Outputs are selectively written to each I/O block from the CPU bus controller during each scan. The outputs written by the CPU bus controller to the AF-300 drives include start/stop, fwd/rev, frequency (speed), fault reset, and other outputs. Many I/O blocks also broadcast inputs to the bus every bus scan. The AF-300 does not support this means of communication as it broadcasts its inputs (feedback) as Global Data.

1.4.2 Global Data

Global data is data broadcast over the network at large, with no particular destination. Each Genius device has the capacity to broadcast up to 128 bytes of global data. Intelligent devices, which reside on the LAN (bus controllers, OIUs, etc.), can read this data off the network. These devices are intelligent and are able to interpret the data, which differs from Genius device to Genius device. The option card utilizes global data to broadcast drive feedback data over Genius. Drive feedback data consists of parameters such as speed reference, torque, current, faults, and function settings.

The option card allows the system designer to select which data is broadcast by the drive as global data. This is important for two reasons. First, the data, which is desired to be monitored on a regular basis varies from application to application. Second, the amount of global data broadcast by the drive is directly proportional to response time. The ability to control the amount and content of global data output is a vital feature of the option card.

In general, the procedure for configuring the drive's Global output data is a process of mapping the global output data words to drive parameters. There are two different means in which this mapping of global data output words to drive parameters can be accomplished. These include mapping from the keypad and from the drive configuration utility. The keypad configuration method is described in Chapter 2.

1.4.3 Datagrams

Datagrams are messages sent over the Genius LAN from one device to another. Datagrams are typically performed in PLC applications through a communications request or COMREQ. Typically, COMREQs are used for occasional data access. For instance, COMREQs are not typically used to monitor speed reference on a continuous basis, but it might be used to change a drive parameter once per shift or once per week. Datagrams (through COMREQs) could also be used to upload or download all drive parameters over the network. In PLC applications, a bus controller is required to perform datagrams or COMREQs.

1.5 Required References and Resources

This manual is to be used in conjunction with the GE FUJI Electric instruction manuals for the AF-300 G11 and P11 series drives. The manual numbers for the drives are as follows:

AF-300G11: Manual \# GEI-100363
AF-300P11: Manual \# GEI-100364

NOTES

CHAPTER 2: INSTALLATION

2.1 Installation Procedures for the Option Card (GEN150)

The option card is designed to be mounted to the AF-300 drive in the same location as the keypad. The same mounting instructions found in the GE FUJI AF-300 Drive Instruction Manual(s) for mounting the keypad to the drive are also used for mounting the option card to the drive. The keypad is, then, mounted to the option card. (Reference numbers for the drive instruction manuals are found in Section 1.5 in this manual.)

The following are the necessary steps for installing the option card:

1. Power down the drive.
2. Remove the keypad from the top cover.
3. Mount the option card in the same location where the keypad was removed. (Securing the two screws, one in the upper left and the other in the lower right).
4. Mount the keypad to the option card. (Securing the two screws, one in the upper left and the other in the lower right).
5. Connect the removable terminal strip with the Genius field wiring to the option card.
6. Power up the drive as needed.

Figure 2.1 shows an example of how the option card is installed in an under 40 Horsepower drive.

Figure 2.1 - Example Installation in an Under 40 Horsepower Drive

CH. 2

2.2 Genius Wiring

Up to 32 devices are wired in a daisy-chained fashion in a Genius network. (See Figure 1.1 for an overview of Genius network.) The network is terminated at each end with an appropriate terminating resistor (Figure 2.2). The value of the resistor is chosen to match the characteristic impedance of the cable. Refer to GE Genius I/O and System Communications User Manual (GE-90486) for help in selecting an appropriate cable type for the application.

Note: If the characteristic impedance of the cable is unknown, 120 -ohm terminating resistors need to be used

Figure 2.2 - Typical Genius Wiring Techniques
Network devices support four communications terminals, Serial 1, Serial 2, Shield In and Shield Out. (Figure 2.3.)

Figure 2.3 - Genius Connector

The LED designators and connector pin out are shown in Figure 2.3. In addition to the normal Genius connections showing in Figure 2.2, Frame Ground must be attached to the "FG" terminal, Terminal 5.

Table 2.1 -- Genius LEDs	
LED	Description
GENA OK	Illuminated unless there is a fault with the GENA board.
COMM OK	The "COMM OK" indicator illuminates when the GENA board is communicating with the Genuis Bus Controller (GBC) properly. If the "COMM OK" LED is not illuminated after configuration, check the following:
Make sure the cable is wired correctly between the GBC and the option card.	
Check the GBC configuration (LM90 Configuration package). The Global data length, and the Directed control data length must match the input length and the output length respectively.	

NOTES

CHAPTER 3: OPTION CARD CONFIGURATION (USING AF-300 KEYPAD)

3.1 Keypad Functionality

The keypad functions and operations are covered in the drive manufacturer documentation. This document is concerned only with describing the keypad functions that are used to configure the option card and effect the option card operation.

3.2 Option Card Configuration Parameters

The following table lists and describes the parameter settings used to configure the Option Card parameters. As described previously, Genius devices have the capacity to broadcast 128 bytes (64 words) of global data and receive 128 bytes (64 words) of directed data. The Option Card is limited to 24 bytes (12 words) of global data and 20 bytes (10 words) of directed data. The parameter values can be changed using the instructions found in the drive manufacturer's documentation.

Table 3.1 - Parameter Settings			
Option Card Parameter	Description	Valid Input Values	Default Value (031 = 255)
030	Bus Address	$\begin{gathered} \hline \text { 0-31 (1-30 } \\ \text { typical) } \\ \hline \end{gathered}$	1
031	Baud Rate - $0=153.6 \mathrm{~K} \mathrm{EXT}$ - $1=153.6 \mathrm{~K}$ STD - $2=76.8 \mathrm{~K}$ - $3=38.4 \mathrm{~K}$ - $255=$ Reset parameters to default	$\begin{aligned} & 0-3 \\ & 255 \end{aligned}$	1 = 153.6K standard
032	Global Data Length	0-12	7
033	Directed Data Length	0-10	4
034	User Defined Broadcast Data 1	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	M14 Operating State
035	User Defined Broadcast Data 2	$\begin{gathered} 1,254 \\ 1-254 \\ 0 ; 255^{*} \end{gathered}$	M06 Actual Frequency
036	User Defined Broadcast Data 3	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	M11 Output Current
037	User Defined Broadcast Data 4	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	M10 Motor Output
038	User Defined Broadcast Data 5	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	M16 Fault Memory 0
039	User Defined Broadcast Data 6	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	M07 Actual Torque
040	User Defined Broadcast Data 7	$\begin{gathered} 1-254 \\ 0 ; 255^{*} \end{gathered}$	M01 Frequency Command
041	User Defined Broadcast Data 8	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \\ & \hline \end{aligned}$	255
042	User Defined Broadcast Data 9	$\begin{aligned} & 0, \text { cuv } \\ & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	255
043	User Defined Broadcast Data 10	$\begin{aligned} & 1-254 \\ & 0 ; 255^{\star} \end{aligned}$	255

CH. 3

Table 3.1 - Parameter Settings			
Option Card Parameter	Description	Valid Input Values	Default Value (031 = 255)
044	User Defined Broadcast Data 11	$\begin{gathered} 1-254 \\ 0 ; 255^{\star} \end{gathered}$	255
045	User Defined Broadcast Data 12	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \\ & \hline \end{aligned}$	255
046	User Defined Control Data 1	$\begin{aligned} & 1-254 \\ & 0 ; 255^{\star} \end{aligned}$	S06 Operation Command
047	User Defined Control Data 2	$\begin{array}{r} 1-254 \\ 0 ; 255^{*} \\ \hline \end{array}$	S01 Frequency Cmd
048	User Defined Control Data 3	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \end{aligned}$	S07 Universal Do
049	User Defined Control Data 4	$\begin{aligned} & 1-254 \\ & 0 ; 255^{\star} \end{aligned}$	S12 Universal Ao
050	User Defined Control Data 5	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \\ & \hline \end{aligned}$	255
051	User Defined Control Data 6	$\begin{gathered} \hline 1-254 \\ 0 ; 255^{*} \\ \hline \end{gathered}$	255
052	User Defined Control Data 7	$\begin{aligned} & 1-254 \\ & 0 ; 255^{\star} \\ & \hline \end{aligned}$	255
053	User Defined Control Data 8	$\begin{gathered} 1-254 \\ 0 ; 255^{*} \\ \hline \end{gathered}$	255
054	User Defined Control Data 9	$\begin{aligned} & 1-254 \\ & 0 ; 255^{*} \\ & \hline \end{aligned}$	255
055	User Defined Control Data 10	$\begin{aligned} & 1-254 \\ & 0 ; 255^{\star} \end{aligned}$	255
Note: If the Option Card detects and invalid parameter value then the parameter number containing the invalid value appears at o31 (Bus address). It is recommended that parameter o31 be checked after the configuration is completed to make sure that all parameter values are valid. * 0 and 255 are used to notate unused configuration parameter.			

3.2.1 User Defined Parameters

The object of the user defined configuration parameters is to create a selectable data map for the Genius data. There are 254 available parameters and only 12 broadcast and 10 control data words available on the Genius network. The selectable map allows the user to configure what parameters and how many are to be used.

The following table shows how the user defined map translates to GBC global and control data words.

Cable 3.2 - Translation of Global and Data Words (Option Card to GBC)					Control Data (GBC to Option Card)	
Broadcast Data Parameter Number	Parameter Value Appears in GBC Word \#	Control Data Parameter Number	GBC Word written to Parameter			
	Word	PLC		Word	PLC	
1	1	Al1	1	1	AQ1	
2	2	Al2	2	2	AQ2	
3	3	Al3	3	3	AQ3	
4	4	Al4	4	4	AQ4	
5	5	Al5	5	5	AQ5	
6	6	Al6	6	6	AQ6	
7	7	Al7	7	7	AQ7	
8	8	Al8	8	8	AQ8	
9	9	AI9	9	9	AQ9	
10	10	Al10	10	10	AQ10	
11	11	Al11				
12	12	Al12				

CH. 3

3.3 Operation Configuration Parameters

The previous section described parameters that are used to directly configure the Option Card. There are other configurable parameters in the drive that effect the operation of the Option Card, (GEN150), such as drive control and error handling. The following table lists and describes the parameter settings that affect the Option Card operation.

Table 3.3 - Parameter Effect on Option Card Operation					
Operation Parameter	Description			Valid Input Values	Default Value
H30	Link Function			0-3	0
	Value	Freq. from Option Card	Commands from Option Card		
	0	Disabled	Disabled		
	1	Enabled	Disabled		
	2	Disabled	Enabled		
	3	Enabled	Enabled		
027	Loss of Network Behavior - $0=$ Immediate trip - Code ERR5 - 1 = ERR5 trip after timer setting o28 - $2=$ Re-check after the timer setting 028 - 3 = Ignore communication error			0-3	0
028	ERR5 timer setting (used with 027)			0.0-60.0 S	0.0 Seconds

3.3.1 Description of Parameter H3O

Parameter H3O is used to split the Frequency and Command control between the drive and the Option Card. The frequency and/or the stop/start commands can be controlled completely by the drive, completely by the option card or split so one of the commands is controlled by the drive and the other is controlled by the option card.

3.3.2 Description of Parameters o27 and o28

Parameters o27 configures how the drive reacts to a loss of network. Out of the four settings, the first (0) setting allows for an immediate trip when a network problem occurs. The last setting (3) configures the drive to ignore the error. The middle two settings (1 and 2) use a timer setting (o28) in conjunction with the error setting. Parameter o28 contains the timer setting that is used when o27 is configured for a value of 1 or 2 .

3.3.3 Network Loss

Network loss (ERR5) occurs when the COMM OK led is not on. There are a few reasons that cause this condition. The following table lists the most common reasons for a network loss (ERR5) condition:

Table 3.4 - Network Loss Conditions	
1	Genius cable broken or not connected
2	The Global and Directed data lengths do NOT match the settings in the GBC.
3	The PLC is not in RUN mode.

CH. 3

NOTES

CHAPTER 4: GENIUS BUS CONTROLLER CONFIGURATION

4.1 PLC Configuration

This chapter discusses the configuration of the PLC in Genius applications using the AF-300 drive with GEN100 Genius option board. As mentioned in a previous chapter, Genius LANs performing control require a Genius Bus Controller. Most GE Fanuc PLCs offer a module which acts as the bus controller. This document discusses configuration of the Series 90 PLCs -- Series 90-30 and Series 90-70.

4.2 Series 90-70 Configuration

For successful integration of the Series 90-70 GBC, the document GFK-0398, Series 90-70 Genius Bus Controller User's Manual is required.

Configuration of Series 90-70 PLC system requires the use of Logicmaster 90-70, the personal computer software package used for ladder logic programming and system setup. Configuration of the Genius devices residing on the LAN with Logicmaster 90-70 cannot be accomplished until the Genius Bus Controller (GBC) is configured. For instructions on that process, consult GFK-0398 from GE Fanuc.

After configuration of the GBC has been completed, the Genius devices residing on the LAN may be configured by zooming into the slot containing the GBC. A Logicmaster screen similar to that below will appear:

Figure 4.1 - Logicmaster 90-70 Configuration Screen

This is a representation of the Genius LAN, with each device shown as a "block". Because only eight devices can be shown on the screen at once, the screen "wraps around" from left to right. The left and right cursor keys are used to select the device to be configured. When the desired block is highlighted, the type of Genius device can be selected using the function keys. The AF-300 is configured as a "Generic Genius I/O Device". This device is selected by pressing the "Other" (F7) function key, and selecting the "Generic I/O" device from the devices listed.

Figure 4.2 - Generic I/O Device Configuration Screen
Below, each configuration parameter is described. The proper setting for a drive with a default data configuration is also listed. Figure 4.3 lists the default drive data configuration.

\%AI Length (Default = 6)

The number of \%Als assigned to the AF-300 drive should be equal to the number of global data words broadcast by the drive.
\%AQ Length (Default = 1)
The number of \%AQs assigned to the AF-300 drive should be equal to the number of directed control words.

Reference Addresses

In addition to the length of each of the four I/O references (\%I, \%Q, \%AI, \%AQ), the starting reference address for each I/O type must be set for each of the I/O references with a non-zero length. This reference address should not conflict with any other I/O module or Genius device.

Redundancy

If the AF-300 is used in a redundant application, this parameter should be set to YES.

Input Default

The input defaults can be set to OFF or HOLD, as desired.

Outputs Enabled

If outputs from the PLC are to be enabled (most cases), this parameter should be set to YES.
Note that the reference types available for mapping into Series 90-30 memory are more numerous than those available for the Series 90-70. This is due to the fact that the Series 90-70 performs more data type checking than the Series $90-30$. This extra checking requires that the number and type of memory references to match exactly in the Series 90-70. The Series $90-30$ requires only that the amount of data match exactly.

4.3 Series 90-30 Configuration

For full information on the configuration of Genius LANs with the Series 90-30 PLC, consult the GE Fanuc document GFK-1034, Series 90-30 Genius Bus Controller User's Manual.

The Series $90-30$ PLC is configured using Logicmaster 90-30. In the configuration package, the Genius Bus Controller (GBC) configuration screen appears as follows:

Figure 4.3 - Series 90-30 GBC Configuration Screen

The devices residing on the Genius LAN are configured in the lower "Device Data" section of the screen. The cursor keys are used to navigate around the screen. When the cursor is on the "Device Data" section of the screen, the PageUp and PageDown keys are used to select the Device number. Once the proper device number is displayed for the AF-300, the following parameters can be set.

Device Type

The AF-300 is configured as a GENERIC device type, which is the default.

Input References (Input 1 Ref, Input 2 Ref)

These parameters specify where the AF-300's global data is mapped in Series $90-30$ memory. Legal reference types for these parameters are \%l, \%G, \%AI, and \%R. The global data broadcast by the AF300 can be divided into two different areas of PLC memory. For instance, part of the global data can be mapped into \%I and the remainder into \%AI. Two non-consecutive areas of the same reference type can also be mapped. For instance, part of the global data can be mapped to \%R1 and the remainder to \%R500.

Input Length (Input 1 Len, Input 2 Len)

These parameters specify how much global data is broadcast by the AF-300. If the Input Reference specified is bit-type (\%l, \%G), the length parameter is in bits. If the Input Reference specified is word type (\%AI, \%R), the length parameter is in words. The total amount of data mapped into the Series 90-30 must exactly match the total amount of global data broadcast by the AF-300.

If bit-type parameters are used then they must be defined in the first global words of the drive. They must also be configured as bit-type data in the bus controller

Output References (Output 1 Ref, Output 2 Ref)

These parameters specify where the AF-300's directed control data is mapped in Series $90-30$ memory. Legal reference types for these parameters are \%Q, \%G, \%AQ, and \%R. As you can see, the directed data input by the AF-300 can be divided into two different areas of PLC memory. For instance, part of the global data could be mapped into \%Q, and the remainder into \%AQ. Two non-consecutive areas of the same reference type could also be mapped. For instance, part of the directed data could be mapped to \%R1, and the remainder to \%R500.

Output Length (Output 1 Len, Output 2 Len) Output

These parameters specify how much directed data is received by the AF-300. If the Output Reference specified is bit-type (\%Q, \%G), the length parameter is in bits. If the Output Reference specified is word type (\%AQ, \%R), the length parameter is in words. The total amount of data mapped from the Series 9030 must exactly match the total amount of global data received by the AF-300.

If bit-type parameters are used then they must be defined in the first global words of the drive. They must also be configured as bit-type data in the bus controller.

CHAPTER 5: AF-300 DRIVE PARAMETERS

5.1 Drive Parameter Descriptions

The following table contains the communication index number used for mapping the drive parameters into Genius I/O. Each communication index number is associated with a specific parameter. The details about the specific parameters can be found in the manual supplied with the drive.

Table 5.1 - Communication Parameter Index						
Comm Index	G11 data	E11 data	Hex	Description	Keypad	Data Format
0	-	-	0			
1	S01	S01	1	Frequency command		2
2	-	-	2			
3	-	-	3			
4	-	-	4			
5	S05	S05	5	Frequency command		5
6	S06	S06	6	Operation command		14
7	S07	S07	7	Universal Do		15
8	S08	S08	8	Accel Time		3
9	S09	S09	9	Deccel Time		3
10	S10	S10	A	Driving Torque Limit		5
11	S11	S11	B	Braking Torque Limit		5
12	S12	S12	C	Universal Ao		2
13	-	-	D			
14	-	-	E			
15	M01	M01	F	Frequency (Motor speed) setting (final)		2
16	-	-	10	Torque command (final)		
17	-	-	11	Torque current command (final)		
18	-	-	12	Magnetic flux command (final)		
19	M05	M05	13	Frequency setting (final)		5
20	M06	M06	14	Actual frequency		2
21	M07	M07	15	Actual value of torque		6
22	M08	M08	16	Torque current		6
23	M09	M09	17	Output frequency		5
24	M10	M10	18	Motor output		5
25	M11	M11	19	Output current (rms)		5
26	M12	M12	1A	Output voltage (rms)		3
27	M13	M13	1B	RUN command, Di, RESET input (final)		14
28	M14	M14	1C	Operation state		16

Table 5.1 - Communication Parameter Index					
68	-	44			
69	-	45			
70	F00	46	Data protection	DATA PRTC	1
71	F01	47	Frequency command 1	FREQ CMD 1	1
72	F02	48	Operation method	OPR METHOD	1
73	F03	49	Maximum frequency 1	MAX Hz-1	1
74	F04	4A	Base frequency 1	BASE Hz-1	1
75	F05	4B	Rated voltage 1	RATED V-1	1
76	F06	4C	Maximum voltage 1	MAX V-1	1
77	F07	4D	Acceleration time 1	ACC TIME1	12
78	F08	4E	Deceleration time 1	DEC TIME1	12
79	F09	4F	Torque boost 1	TRQ BOOST1	12
80	F10	50	Electronic Thermal 1 (Select)	ELCTRN OL1	3
81	F11	51	Electronic Thermal 1 (Level)	OL LEVEL1	1
82	F12	52	Electronic Thermal 1 (Time constant)	TIME CNST1	19
83	F13	53	Electronic thermal overload relay (for DB resistor)	DBR OL	3
84	F14	54	Restart mode after momentary power failure	RESTART	1
85	F15	55	Frequency limiter (High)	H LIMITER	1
86	F16	56	Frequency limiter (Low)	L LIMITER	1
87	F17	57	Gain (for freq set signal)	FREQ GAIN	1
88	F18	58	Bias frequency	FREQ BIAS	1
89	F20	59	DC brake (Starting freq.)	DC BRK Hz	3
90	F21	5A	DC brake (Braking level)	DC BRK LVL	1
91	F22	5B	DC brake (Braking time)	DC BRK t	3
92	F23	5C	Starting frequency (Freq.)	START Hz	3
93	F24	5D	Starting frequency (Holding time)	HOLDING t	3
94	F25	5E	Stop frequency	STOP Hz	1
95	F26	5F	Motor sound (Carrier freq.)	MTR SOUND	1
96	F27	60	Motor sound (Sound tone)	SOUND TONE	1
97	F30	61	FMA (Voltage adjust)	FMA V-ADJ	1
98	F31	62	FMA (Function)	FMA FUNC	1
99	F33	63	FMP (Pulse rate)	FMP PULSES	1
100	F34	64	FMP (Voltage adjust)	FMP V-ADJ	1
101	F35	65	FMP (Function)	FMP FUNC	1
102	F36	66	30RY operation mode	30RY MODE	1
103	F40	67	Torque limiter 1 (Driving)	DRV TRQ 1	1
104	F41	68	Torque limiter 1 (braking)	BRK TRQ 1	1
105	F42	69	Torque vector control 1	TRQVECTOR1	1
106	E01	6A	X1 terminal function	X1 FUNC	1

Table 5.1 - Communication Parameter Index					
107	E02	6B	X2 terminal function	X2 FUNC	1
108	E03	6C	X3 terminal function	X3 FUNC	1
109	E04	6D	X4 terminal function	X4 FUNC	1
110	E05	6E	X5 terminal function	X5 FUNC	1
111	E06	6F	X6 terminal function	X6 FUNC	1
112	E07	70	X7 terminal function	X7 FUNC	1
113	E08	71	X8 terminal function	X8 FUNC	1
114	E09	72	X9 terminal function	X9 FUNC	1
115	E10	73	Acceleration time 2	ACC TIME2	12
116	E11	74	Deceleration time 2	DEC TIME2	12
117	E12	75	Acceleration time 3	ACC TIME3	12
118	E13	76	Deceleration time 3	DEC TIME3	12
119	E14	77	Acceleration time 4	ACC TIME4	12
120	E15	78	Deceleration time 4	DEC TIME4	12
121	E16	79	Torque limiter 2 (Driving)	DRV TRQ 2	1
122	E17	7A	Torque limiter 2 (braking)	BRK TRQ 2	1
123	E20	7B	Y1 terminal function	Y1 FUNC	1
124	E21	7C	Y2 terminal function	Y2 FUNC	1
125	E22	7D	Y3 terminal function	Y3 FUNC	1
126	E23	7E	Y4 terminal function	Y4 FUNC	1
127	E24	7F	Y5A, Y5C terminal func.	Y5 FUNC	1
128	E30	80	FAR function (Hysteresis)	FAR HYSTR	3
129	E31	81	FDT function (Level)	FDT1 LEVEL	1
130	E32	82	FDT signal (Hysteresis)	FDT1 HYSTR	3
131	E33	83	OL function (Mode select)	OL1 WARNING	1
132	E34	84	OL function signal (Level)	OL1 LEVEL	19
133	E35	85	OL function signal (Timer)	OL1 TIMER	3
134	E36	86	FDT2 function (Level)	FDT2 LEVEL	1
135	E37	87	OL2 function (Level)	OL2 LEVEL	19
136	E40	88	Display coefficient A	COEF A	12
137	E41	89	Display coefficient B	COEF B	12
138	E43	8A	LED Monitor (Function)	LED MNTR	1
139	E44	8B	LED Monitor (Display @ STOP mode)	LED MNTR2	1
140	E45	8C	LCD Monitor (Function)	LCD MNTR	1
141	C01	8D	Jump frequency (Jump freq 1)	JUMP Hz 1	1
142	C02	8E	Jump frequency (Jump freq 2)	JUMP Hz 2	1
143	C03	8F	Jump frequency (Jump freq 3)	JUMP Hz 3	1
144	C04	90	Jump frequency (Hysteresis)	JUMP HYSTR	1
145	C05	91	Multistep frequency setting (Freq. 1)	MULTI Hz-1	5

Table 5.1 - Communication Parameter Index					
146	C06	92	Multistep frequency setting (Freq. 2)	MULTI Hz-2	5
147	C07	93	Multistep frequency setting (Freq. 3)	MULTI Hz-3	5
148	C08	94	Multistep frequency setting (Freq. 4)	MULTI Hz-4	5
149	C09	95	Multistep frequency setting (Freq. 5)	MULTI Hz-5	5
150	C10	96	Multistep frequency setting (Freq. 6)	MULTI Hz-6	5
151	C11	97	Multistep frequency setting (Freq. 7)	MULTI Hz-7	5
152	C20	98	JOG frequency	JOG Hz	5
153	C30	99	Frequency command 2	FREQ CMD 2	1
154	C31	9A	Offset adjust (terminal [12])	BIAS 12	4
155	C32	9B	Offset adjust (terminal [C1])	GAIN 12	3
156	C33	9C	Analog setting signal filter	REF FILTER	5
157	P01	9D	Number of motor 1 poles	M1 POLES	1
158	P02	9E	Motor 1 (Capacity)	M1 -CAP	5
159	P03	9F	Motor 1 (Rated current)	M1-Ir	19
160	P04	A0	Motor 1 (Tuning)	M1 TUN1	21
161	P05	A1	Motor 1 (On-line Tuning)	M1 TUN2	1
162	P06	A2	Motor 1 (No-load current)	M1-Io	19
163	P07	A3	Motor 1 (\%R1 setting)	M1-\%R1	5
164	P08	A4	Motor 1 (\%X setting)	M1-\%X	5
165	P09	A5	Slip compensation control	SLIP COMP1	5
166	H03	A6	Data initializing	DATA INIT	1
167	H04	A7			1
168	H05	A8			1
169	H06	A9	Fan stop operation	FAN STOP	1
170	H07	AA			1
171	H08	AB	Rev. phase sequence lock	REV LOCK	1
172	H09	AC	Start mode	START MODE	1
173	H10	AD	Energy-saving operation	ENERGY SAV	1
174	H11	AE	DEC mode	DEC MODE	1
175	H12	AF	Instantaneous OC limiting	INST CL	1
176	H13	B0			
177	H14	B1			
178	H15	B2			
179	H16	B3			
180	H18	B4	Torque control	TRQ CTRL	1
181	H19	B5			
182	H20	B6	PID control (Mode select)	PID MODE	1
183	H21	B7	PID control (Feedback signal)	FB SIGNAL	1
184	H22	B8	PID control (P-gain)	P-GAIN	5

Table 5.1 - Communication Parameter Index					
185	H23	B9	PID control (l-gain)	I-GAIN	3
186	H24	BA	PID control (D-gain)	D-GAIN	1
187	H25	BB	PID control (Feedback filter)	FB FILTER	5
188	H26	BC	PTC thermistor (Mode select)	PTC MODE	1
189	H27	BD	PTC thermistor (Level)	PTC LEVEL	5
190	H28	BE	Droop operation	DROOP	4
191	H30	BF	Serial link (Function select)	LINK FUNC	1
192	H31	CO	Modbus-RTU (Address)	ADDRESS	1
193	H32	C1	Modbus-RTU (Mode select on no response error)	MODE ON ER	1
194	H33	C2	Modbus-RTU (Timer)	TIMER	3
195	H34	C3	Modbus-RTU (Baud rate)	BAUD RATE	1
196	H35	C4	Modbus-RTU (Data length)	LENGTH	1
197	H36	C5	Modbus-RTU (Parity check)	PARITY	1
198	H37	C6	Modbus-RTU (Stop bits)	STOP BITS	1
199	H38	C7	Modbus-RTU (No resp. error detection time)	NO RES t	1
200	H39	C8	Modbus-RTU (Response interval)	INTERVAL	5
201	A01	C9	Maximum frequency 2	MAX Hz-2	1
202	A02	CA	Base frequency 2	BASE Hz-2	1
203	A03	CB	Rated voltage 2 (at Base frequency 2)	RATED V-2	1
204	A04	CC	Maximum voltage 2	MAX V-2	1
205	A05	CD	Torque boost 2	TRQ BOOST2	1
206	A06	CE	Electronic thermal 2 (Select)	ELCTRN OL2	1
207	A07	CF	Electronic thermal 2 (Level)	OL LEVEL2	19
208	A08	D0	Electronic thermal 2 (Thermal time constant)	TIME CNST2	3
209	A09	D1	Torque vector control 2	TRQVECTOR2	1
210	A10	D2	Number of motor 2 poles	M2 POLES	1
211	A11	D3	Motor 2 (Capacity)	M2-CAP	5
212	A12	D4	Motor 2 (Rated current)	M2-Ir	19
213	A13	D5	Motor 2 (Tuning)	M2 TUN1	21
214	A14	D6	Motor 2 (On-line Tuning)	M2 TUN2	1
215	A15	D7	Motor 2 (No-load current)	M2-Io	19
216	A16	D8	Motor $2 \quad$ (\%R1 setting)	M2-\%R1	5
217	A17	D9	Motor 2 (\%X setting)	M2-\%X	5
218	A18	DA	Motor 2 (Slip compensation control 2)	SLIP COMP2	5
219	001	DB	Control method selection		1
220	002	DC	Speed filter time constant		1
221	003	DD	Number of feedback pulses		1
222	004	DE	P-gain of feedback		1

Table 5.1 - Communication Parameter Index				
223	005	DF	l-gain of feedback	1
224	006	E0	Feedback speed detection filter	1
225	007	E1	Feedback pulse correction coeff 1	1
226	008	E2	Feedback pulse correction coeff 2	1
227	027	E3	Bus loss behavior	1
228	028	E4	Bus loss timer	1
229	030	E5	Bus address	1
230	031	E6	Baud rate	1
231	032	E7	Global Data Length	1
232	033	E8	Directed Data Length	1
233	034	E9	User Defined Broadcast Data 1	1
234	035	EA	User Defined Broadcast Data 2	1
235	036	EB	User Defined Broadcast Data 3	1
236	037	EC	User Defined Broadcast Data 4	1
237	038	ED	User Defined Broadcast Data 5	1
238	039	EE	User Defined Broadcast Data 6	1
239	040	EF	User Defined Broadcast Data 7	1
240	041	F0	User Defined Broadcast Data 8	1
241	042	F1	User Defined Broadcast Data 9	1
242	043	F2	User Defined Broadcast Data 10	1
243	044	F3	User Defined Broadcast Data 11	1
244	045	F4	User Defined Broadcast Data 12	1
245	046	F5	User Defined Control Data 1	1
246	047	F6	User Defined Control Data 2	1
247	048	F7	User Defined Control Data 3	1
248	049	F8	User Defined Control Data 4	1
249	050	F9	User Defined Control Data 5	1
250	051	FA	User Defined Control Data 6	1
251	052	FB	User Defined Control Data 7	1
252	053	FC	User Defined Control Data 8	1
253	054	FD	User Defined Control Data 9	1
254	055	FE	User Defined Control Data 10	1
255	-	FF		

5.2 Data Format Specification

Data format [1]: Integer data (Positive): Min. unit 1
Example) If F15 (Frequency limiter, upper limit) $=60 \mathrm{~Hz}$
Since $60=003 C_{H}$
Data format [2]: Integer data (Positive, negative): Min. unit 1
Example) - 20
Since $-20=$ FFEC $_{H}$
Data format [3]: Decimal data (Positive): Min. unit 0.1
Example) If F17 (gain frequency setting signal) $=100.0 \%$
Since $100.0 \times 10=1000=03 E 8_{H}$
Data format [4]: Decimal data (Positive, negative): Min. unit 0.1
Example) If C31 (Analog input offset adjust, terminal12) $=-5.0 \%$
Since $-5.0 \times 10=-50=$ FFCE $_{H}$
Data format [5]: Decimal data (Positive): Min. unit 0.01
Example) If CO (multi-step frequency 1) $=50.25 \mathrm{~Hz}$
Since $50.25 \times 100=5025=13 \mathrm{~A} 1_{H}$
Data format [6]: Decimal data (Positive, negative): Min. unit 0.01
Example) If M07 (actual torque value) $=-85.38 \%$
Since $-85.38 \times 100=-8538=$ DEA6 ${ }_{H}$

Data format [7]: Decimal data (Positive): Min. unit 0.001

Example) If o05 (follow - up side ASR 1 constant) $=0.105 \mathrm{~s}$
Since $0.105 \times 1000=105=0069_{H}$
Data format [8]: Decimal data (Positive, negative): Min. unit 0.001
Example) If being -1.234
Since $-1.234 \times 1000=-1234=$ FB2E $_{H}$
Data format [9]: Integral data (Positive): Min. unit 2
Example) If P01 (Motor 1 number of poles) $=2$ pole
Since $2=0002 \mathrm{H}$

Data format [10]: Alarm code

Code	Description		Code	Description	
0	No alarm	---	28	PG wire breaking	Pg
1	Overcurrent, during acceleration (INV output)	OC1	31	Memory error	Er1
2	Overcurrent, during deceleration (INV output)	OC2	32	Keypad panel transmission error	Er2
3	Overcurrent, during steady state operation (INV output)	OC3	33	CPU error	Er3
5	Ground fault	EF	34	Option communication error	Er4
6	Overvoltage, during acceleration	OU1	35	Option error	Er5
7	Over voltage, during deceleration	OU2	36	PL error	Er6
8	Overvoltage, during steady state operation	OU3	37	Output wiring error	Er7
10	DC undervoltage	LU	38	RS485 communication error	Er8
11	Power supply open phase	Lin			
14	Blown DC fuse	FUS			
16	Output wiring error	Er7			
17	Overheat, heat sink, inverter	OH1			
18	Overheat, outside thermal	OH2			
19	Overheat, unit inside temp.	OH3			
22	Overheat, DB resistor	dbH			
23	Overload, motor 1	OL1			
24	Overload, motor 2	OL2			
25	Overload, inverter	OLU			
27	Overspeed	OS			

Example) If over - voltage, during acceleration (OU1).
Since $6=0006 \mathrm{H}$

Data format [11]: Capacity code

Code	Capacity (HP)	Code	Capacity (HP)	Code	Capacity (HP)
7	0.07 (spare)	1500	15	15000	150
15	0.15 (spare)	2000	20	17500	175
25	0.25	2500	25	20000	200
50	0.5	3000	30	25000	250
100	1	4000	40	30000	300
200	2	5000	50	35000	350
300	3	6000	60	40000	400
500	5	7500	75	45000	450
750	7.5	10000	100	50000	500
1000	10	12500	125		

Example) 30HP
Since $30 \times 100=3000=0$ BB8 ${ }_{H}$

CH. 5

Data format [12]: Index data (ACC/DEC time, display coefficient)

Example) If F07 (acceleration time 1) $=20.0 \mathrm{~s}$
Since $20.0=0.1 \times 200 \Rightarrow 0400_{H}+00 \mathrm{C} 8_{H}=04 C 8_{H}$

Data format [13]: Pattern operation

Example) If C22 (Stage1) $=10.0$ s R2 (10s, reverse rotation, acceleration time 2/deceleration time 2)
Since $10.0=0.1 \times 100 \Rightarrow 9000_{H}+0400_{H}+0064_{H}=9464_{H}$

Data format [14]: Operation command

(All bit are ON by 1)
Example) If S06 (operation command) $=$ FWD, X 1 and $\mathrm{X} 5=\mathrm{ON}$
Since $0000000001000101_{\mathrm{b}}=0045_{\mathrm{H}}$

Data format [15]: Universal output terminal

(All bit are ON by 1)
Example) If M15 (Universal output terminal) $=\mathrm{Y} 1$ and $\mathrm{Y} 5=\mathrm{ON}$
Since $0000000000010001_{\mathrm{b}}=0011_{\mathrm{H}}$
Data format [16]: Operating state

15	1413	12	11	10	9	8	7	6	5	4	3	2	1	0
BUSY	WR	RL	ALM	DEC	ACC	IL	VL	TL	NUV	BRK	INT	EXT	REV	FWD

(All bit are ON or active by 1)

FWD:	Under forward operation
REV:	Under reverse operation
EXT:	Under DC braking (or under
	pre-excitation)
INT:	Inverter trip
BRK:	Under braking
NUV:	DC link voltage is established
	(undervoltage at 0)
TL:	Under torque limiting
VL:	Under voltage limiting

IL: Under current limiting
ACC: Under acceleration
DEC: Under deceleration
ALM: Lump alarm
RL: Transmission valid
WR: \quad Function writing right
0: Keypad panel
1: RS485
2: Link (option)
BUSY: Under data writing (processing)

Data format [17]: Type code

Type	Generation	Series	Voltage series

Code	Type	Generation	Series	Voltage series
1	VG	G11/P11	For domestic	100 V single phase
2	G	-	For Asia	200 V single phase
3	P	-	For China	200 V three phase
4	E	-	For Europe	400 V three phase
5	C	-	For USA	575 V three phase
6	S	-	-	

Data format [18]: Code setting

Data 4	Data 3	Data 2	Data 1

Example) If o22 (Ai function selection)=123
Since $123=0123_{\mathrm{H}}$

Data format [19]: Amperage value Decimal data (positive):

Min. unit 0.01 for inverter capacity is not more than 30HP
Min. unit 0.01 for not less than 40HP respectively
Example) If F11 (electronics thermal overload relay 1 level) 107.0A (40HP)
Since $107.0 \times 10=1070=042 \mathrm{E}_{\mathrm{H}}$

If F11 (electronics thermal overload relay 1 level) $=3.60 \mathrm{~A}$ (1 HP)
Since $3.60 \times 100=360=0168_{H}$

Data format [20] Transmission error code

Code	Description	Code	Description	
1	FC (function code) error	71	CRC error	(no response)
2	Illegal address	72	Parity error	(no response)
3	Illegal data (Data range error)	73	Other errors - Framing error - Overrun error - Bufferfull error	(no response)
7	NAK - Priority for link - No right for writing error - Forbidden writing error			

Example) If illegal address
Since 2=0002 ${ }_{\text {H }}$

Data format [21] Auto tuning

Example: If P04 (motor 1 auto - tuning)=1: Forward rotation Since $0000000100000001^{\text {b }}=0101_{H}$

CH. 5

NOTES

CHAPTER 6: DATAGRAM ACCESS

6.1 General

Global and directed data are the standard methods used to send and receiving drive parameter data.
Datagrams can also be used to send and receive drive parameter data. Sending and receiving data using datagrams is done using a communications request (COMM_REQ) in the PLC logic. There two communications requests that are support by the drive card, Write Device (20H) and Read Device (1EH). The specifics on using communications requests are found in the Series 90-30 Genius Bus Controller User's Manual (GFK-1034) or refer to Appendix A for the Write and Read datagram COMM_REQ values. The following sections describe specific portions of the datagrams that are specific to communicating with the option card.

6.2 Write to Drive using Datagram

The Send Datagram COMM_REQ (14) is used to send a Write Device datagram. The Write Device datagram is used to write from the PLC to parameters in the drive. The COMM_REQ allows multiple sequential parameters to be written. A starting parameter number is supplied, the number of parameters and the values of the parameters. The following is an example of a Write Device datagram to set the drive speed to 30.00 Hz (Figure 6.1).

Figure 6.1 - Ladder Example \#1 (Write to Drive)

The starting address for the COMM_REQ is the first word in the first block move at \%R100. Table 6.1 provides an explanation of the values in the example (Figure 6.1) that are either specific to the drive or change depending on the COMM_REQ values. The values in the example are bold and are noted by superscript numbers that correlate to the numbers in Table 6.1

Table 6.1 - Superscript Notes (Ladder \#1 Example)			
Superscript Number	COMM_REQ Location	Name	Description
1	Address	Command Length	Number of words from Address+6 to Address+n
2	Address+7	Device Number	Device to receive COMM_REQ; 0-31, or 255 to broadcast
3	Address+11	Datagram Length (Bytes)	Length of datagram content beginning at Address+12
4	Address+12	Starting Parameter Number (High byte)	High byte of word contains starting drive parameter.
5	Address+14	Number of Parameter Values to Write (High byte)	High byte of word contains number of parameter values, in bytes, to write to the drive.
6	Address+15 to	Parameter Value Address+n	Value(s) to be written sequentially to drive starting with the parameter number at Address+12 and ending with the parameter number + number of parameters.

6.3 Read from Drive using Datagram

The Request Datagram Reply COMM_REQ (15) is used to send a Read Device datagram. The Read Device datagram is used to read parameters from the drive to the PLC. The COMM_REQ allows multiple sequential parameters to be read. A starting parameter number is supplied and the number of parameters to read. The following is an example of using a Read Device datagram to read the drive speed setting (Parameter 1).

Figure 6.2 - Ladder Example \#2 (Read From Drive)

The starting address for the COMM_REQ is the first word in the first block move at \%R100. Table 6.2 provides an explanation of the values in the example that are either specific to the drive or change depending on the COMM_REQ values. The values in the example are bold and are noted by superscript numbers that correlate to the numbers in Table 6.2.

Table 6.2 - Superscript Notes for Ladder Example \#2			
Superscript Number	COMM_REQ Location	Name	Description
1	Address	Command Length	Number of words from Address+6 to Address+n
2	Address+7	Device Number	Device to receive COMM_REQ; 0-31
3	Address+11	Datagram Length (Bytes)	Length of datagram content beginning at Address+16
4	Address+15	Maximum Data Length	This number must be large enough to accommodate the reply message otherwise data will be lost
5	Address+16	Starting Parameter Number (High byte)	High byte of word contains starting drive parameter.
6	Address+18	Number of Parameter Values to Read (High byte)	High byte of word contains number of parameter values, in bytes, to read from the drive.

The description of the reply datagram from the drive is contained in Table 6.3. A general description can be found in the Series 90-30 Genius Bus Controller User's Manual (GFK-1034).

Table 6.3 - Reply Datagram Description		
COMM_REQ Location	Name	Description
Address	Data Length in Bytes (High Byte) Device Number (Low byte)	The high byte of the word contains the total number of bytes in the reply and the low byte contains the device number where the reply originated.
Address+1	Subfunction Code (High Byte) Function Code (Low Byte)	The high byte of the word contains the Subfunction code and the low byte contains the Function code of the reply datagram.
Address+2	Starting Parameter \# (High Byte) Always 0 (Low Byte)	The high byte of the word contains the starting parameter number and low byte is always 0.
Address+3	Always 0	The word is always 0.
Address+4	\# of Data Bytes (High byte) Always 0 (Low Byte)	The high byte of the word contains the number of data bytes and the low byte is always 0.
Address+5 to Address + n	Drive Parameter Value(s)	The word contains the value for request drive parameter number.

6.4 PLC Ladder Code

In Examples 1 and 2, the COMM_REQ requires four inputs; Power, IN, SYSID and TASK. The Power input is assigned to a contact that is on for only one scan. Leaving this contact on causes the datagram to be sent multiple times and slows down the response time on the Genius LAN. The IN input is set to a \%R reference that contains all of the registers determined in the examples. The SYSID input specifies which rack and slot has the Genius Bus Controller that receives this command. The upper byte is the rack number and the lower byte is the slot number. The value of 0005 in the examples represents rack 0 slot 5 . The TASK input is always set to a 1 .

NOTES

APPENDIX A: COMM_REQ COMMAND BLOCK DESCRIPTIONS

COMMAND BLOCK FOR WRITE DEVICE DATAGRAM (14):

Address	Command Length	Number of words from Address+6 to Address+n
Address +1:	No Wait	0
Address +2:	Status Block Memory Type	70(\%I),72(\%Q),8(\%R), 10(\%AI), or 12(\%AQ)
Address +3:	Status Block Offset	Beginning address for COMREQ status
Address +4:	Idle Timeout Value	0
Address +5:	Max. Communication Time	0
Address +6:	Command Number	14
Address +7:	Device Number for Receiving Device	0-31, or 255 to broadcast message
Address +8:	Function Code	20 H (32)
Address +9:	Subfunction Code (hex)	20H (32)
Address +10:	Priority	0 for Normal, or 1 for High
Address +11:	Datagram Length (in bytes)	Number of bytes from Address+12 to Address+n
Address +12: To Address +n:	Datagram Content	Datagram Content

READ DEVICE DATAGRAM (15):

Address	Command Length	Number of words from Address+6 to Address+n
Address +1:	No Wait	0
Address +2:	Status Block Memory Type	$70(\% /), 72(\% \mathrm{~F}), 8(\% R), 10(\% A I)$, or 12(\%AQ)
Address +3:	Status Block Offset	Beginning address for COMREQ status
Address +4:	Idle Timeout Value	0
Address +5:	Max. Communication Time	0
Address +6:	Command Number	15
Address +7:	Device Number for Receiving	$0-31$
Device	Address +8:	Function Code

PAGE 46

NOTES

INDEX

Comm_Req Command Block 45
Communications Services
Datagrams 9
Global Data 8
I/O Service 8
Datagrams
General 39
PLC Ladder Code 43
Reading From Drive 42
Writing to Drive 39
Drive Parameters (AF-300) 25
Genius
Architecture 8
Communications Services 8
Network Ovenview 7
Wiring 12
Genius Bus Controller
PLC Configuration 21
Global Data 8
Installation
Option Card 11
Manuals
Drives (AF-300) 9
Operation Parameters
Network Loss 19
Parameter H30 18
Parameters 027 and 028 18
Option Card
Configuration Parameters 15
Keypad Functions 15
Operations Parameters 18
User Defined Parameters 16
PLC Ladder Code 43
Product Description 7
Read Device Datagram 45
Series 90-70 Configuration 21
Wiring
Genius 12
Write Device Datagram. 45

