

Mixed Analog Input Module

Product Specifications and Installation Data

1 **DESCRIPTION**

The Mixed Analog Input Module (HE693MIX800) allows sensors to be directly connected to the PLC without external signal processing (e.g., transducers and transmitters). All analog and digital processing of the signals is performed in the module. The module features eight channels and provides an interface for \pm 100mV, \pm 10V, \pm 20mA, \pm 20µA, 100-ohm RTDs, and Thermocouples (Types J,K,N, and E).

2 INSTALLATION

Figure 1 – MIX800

3 **SPECIFICATIONS**

Table 1 – MIX800 Specifications						
GENERAL						
Number of Channels	8	Type of Measurement Integrating, true ratio resistance circuit for				
Speed	40 measurements per second	Analog Noise Filter	Single Pole, 1.5KHz low pass			
Digital Averaging	1,2,4,8,16,32,64,128 samples	Input Transient Protection	Ferrite/Capacitor/ Transzorb clamped at ±13V, Maximum continuous overcurrent: 75mA			
Isolation Voltage	500VDC to PLC/Earth ground	Relative Humidity	5% to 95% non-condensing			
Required Power (Steady State)	400mA @ 5VDC	Operating Temperature	0 to 60°C (32 to 140°F)			
Required Power (Inrush)	600mA @ 5VDC for 5mS					
	RTD (AVAILAB	LE ON CHANNELS 5-8)				
RTD Type	Pt100 Alpha = 0.00385 -200 to 850°C	Accuracy	±1°C			
Excitation Current	205μA peak, 50μA average	3-Wire Lead Resistance Compensation Error	0.25% of lead resistance max.			
Resolution	0.1°C	RTD Short to Ground	Indefinite			
Channel to Channel Tracking	±0.1°C	Input Impedance	>1 Megohm			
	THE	RMOCOUPLE				
	(AVAILABLE	ON CHANNELS 5-8)				
Thermocouple Types	J –210 to 1200°C K –270 to 1372°C N –270 to 1300°C E –270 to 1000°C	Cold Junction Compensation	Internal External AD592 sensor supported. Module must be calibrated with actual sensor for rated accuracy.			
Open Thermocouple	100nA	Common Mode Range	±10V to isolated common			
Resolution	±0.1°C	Accuracy	±2°C			
PHOTOCURRENT (20 (AVAILABLE ON CHA	0μΑ ANNELS 7,8)	DIFFERENTIAL ±100MV (AVAILABLE ON CHANNELS 5-8)				
Sensitivity	20µA full scale	Accuracy	0.2%			
Accuracy	±2%	Input Impedance	2 Megohms			
Common Mode Range	±10V to isolated common	Common Mode Range	±10V to isolated common			
Resolution	15 Bits	Resolution	16 Bits			
SINGLE-ENDED ±100 (AVAILABLE ON CHA	MV ANNELS 1-4)	SINGLE-ENDED ±10V (AVAILABLE ON CHANNELS 1-4)				
Accuracy	0.2%	Accuracy	0.1%			
Input Impedance	1 Megohms	Input Impedance	1 Megohms			
	n 16 Bits Resolution					
	0.2%	-				
Innut Impedance		4				
Resolution	16 Bits]				

4 **CONFIGURATION**

4.1 Configuration Procedure

	SERIES 90-30 MODU	JLE IN RA	CK 2	SLOT	2					
SLOT 2	Catalog #: FO	REIGN	HKE V	JUNEI	F	DREIGN MO	DULE			
FRGN										
	Module ID :	3								
	×I Ref Adr :	×I0001	Byte	1	:	00000001	Byte	9	:	00
	%I Size :	Ø	Byte	2	:	00000100) Byte	10	:	00
	%Q Ref Adr :	×Q0001	Byte	3	:	5[5]	Byte	11	:	00
	×Q Size :	-0	Byte	4	:	00	Byte	12	:	00
	XAI Ref Adr:	%AĪ001	Byte	5	:	ŌŌ	Byte	13	:	ØØ
	XAI Size :	6	Byte	6	:	ŌŌ	Byte	14	:	ŌŌ
	ZAQ Ref Adr:	2AQ001	Bute	2	:	ดิด	Bute	15	:	ЙŌ
	XAQ Size :	Ô	Byte	8	=	ŌŌ	Byte	16	:	ŌŌ

Figure 2 – Foreign Module Configuration Screen

To reach the Foreign Module Configuration screen in Figure 2:

- a. Select I/O Configuration (F1).
- b. Cursor over to the slot containing the module and select Other (F8), and Foreign (F3).
- c. Set parameters (refer to Table 2).

4.1.1 Configuration Parameters

Table 2 indicates the necessary parameters for configuring the MIX800. Change the various bytes (1-11) and set %AI to "8" to reach the desired set-up.

Table 2 – Configuration Parameters for MIX800					
%AI Size	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
	Filter Channel 1		Channel 2	Channel 3	
8	0001	$\begin{array}{c} 0000 \\ 0001 \\ 0001 \\ 0001 \\ 0001 \\ 0000 \\ 00$		$00=\pm10V$ $00=\pm10V$ $01=\pm100mV$ $01=\pm100m$ $02=\pm20mA$ $02=\pm20mA$	
Byte 6	Byte 7	Byte 8 Byte 9		Byte 10	Byte 11
Channel 4	Channel 5	Channel 6	Channel 7	Channel 8	Cold Junction
00= ±10V 01= ±100mV 02= ±20mA	00= Type J 01= Type K 02= Type N 03= Type E 04= PT100 05= ±100mV	00= Type J 01= Type K 02= Type N 03= Type E 04= PT100 05= ±100mV	00= Type J 01= Type K 02= Type N 03= Type E 04= PT100 05= ±100mV 06= 20μA	00= Type J 01= Type K 02= Type N 03= Type E 04= PT100 05= ±100mV 06= 20μA	00= Internal 01= External

4.1.2 Digital Filtering (Byte 2)

Figure 3 indicates the effect of digital filtering (set with Byte 2 from Table 2) on module response to a temperature change. (% temp change completed vs. time).

Figure 3 – Digital Filtering

4.1.3 Temperature Scaling

The MIX800 reports temperature values to the %AI table in 0.1°C increments. Conversion to actual degrees is as indicated: $^{\circ}C =$ %AI / 10.

4.1.4 Scale Factor

Table 3 – Scale Factor				
Туре	Count	Value		
ртр	8000	800.0°C		
RID	0	0°C		
ТЦИ	10000	1000.0°C		
	0	0°C		
204	32000	20 µA		
20 μΑ	0	0		
$\pm 100 \text{ m}$	32000	100.0 mV		
± 100 mv	-32000	-100.0 mV		
+ 20 mA	32000	20.0 mA		
± 20 MA	-32000	-20.0 mA		
+ 10 \/	32000	10 V		
± 10 V	-32000	-10 V		

5 WIRING

5.1.1 Wiring Diagram

Tab	le 3 – MIX800 Pin-out			0014
Pin	Description			COM
1	External cold junction			
	sensor +			INPUT
2	External cold junction			
	sensor -			
3	Single-ended input 1			
4	Single-ended input 2			COM
5	Single-ended input 3			
6	Single-ended input 4			
7	Single-ended common			
8	Single-ended common			
9	Differential input 5 +			
10	Differential input 6 +			
11	Differential input 5 -			
12	Differential input 6 -			COM
13	Differential input 7 +			
14	Differential input 8 +			Figure 4 - S
15	Differential input 7 -			Char
16	Differential input 8 -			
17	Differential common			
18	Differential common			
19	Earth ground			
20	Earth ground			
All com	mons are at the same			DIF + -
potentia	al and are isolated from			
earth ar	nd PLC ground.			
Three	vize DTDe ere wired with			DIF - –
the sing	vire RTDS are wired with		100mV	
difforon	tiel L and the two wires			
on the c	ther and connected to	DIF +		
differen	tial – and differential			\frown
commo	n		(.	+100mV
oommo]	(-	
1 —				
		DIF -		
	- +			Figure
2 —	(ADC592C)			(CI
	\checkmark			
DIF + —		$\overline{}$		DIF
		`		
DIF - —		_		
				DIF

Figure 6 - Optional External Cold Junction

Figure 7 - PhotoCurrent (Channel 7 and 8 only)

5.1.2 Wiring Installation Hints

Short all unused channels to frame ground. (See Figure 1, Pins 17 and 18.)

Wiring must be routed in its own conduit.

Shielded, twisted wiring offers the best noise immunity.

If shielded wiring is used, a good ground connection (on one end only) is critical.

For proper RTD lead resistance compensation, the lead resistances must be matched and must be no more than 50 ohms each.

5.1.3 Wiring Fault Conditions

Table 4 – Wiring Faults					
OPEN SHORT					
Voltage or Current Inputs	0	0			
Thermocouple	Maximum Full Scale	Temperature at Short			
RTD	+ Maximum Full Scale - Minimum Full Scale COM Minimum Full Scale	Minimum Full Scale Minimum Full Scale Minimum Full Scale			

6 TECHNICAL ASSISTANCE

For user manual updates, contact Horner APG, Technical Support Division, at (317) 916-4274 or visit our web site at www.heapg.com.