

Horner Electric
“C” Programming Tool Kit

for the HE693CPU100
90-30 Slot One CPU

HE693TKT100
Version 1.03

PRELIMINARY
This document or media contains preliminary information and is subject to change without notice.

While every effort has been made to ensure accuracy,
Horner APG assumes no responsibility for errors or omissions.

MAN0157-01

HE693CPU100 "C" Tool Kit Manual __

COPYRIGHT NOTICE
The information contained in this document or media is copyrighted material owned by Horner
APG, LLC and may not be reproduced in full or in part without the express written consent of
Horner APG, LLC.

The software described in this document or media is also copyrighted material subject to the
terms and conditions of the Horner Software License Agreement.

Copyright © 1997

HE693CPU100 "C" Tool Kit Manual __

Table of Contents

SOFTWARE INSTALLATION 4

HE693CPU100 HARDWARE SETUP 6

CAN WIRING RULES 7

HE693DRT900 HARDWARE 8

HARDWARE SETUP FOR EXAMPLE PROGRAMS 9

TOOL KIT FUNCTIONS 12
90-30 Module Access Functions ... 12
LED Control Functions .. 22
Virtual Timer Functions... 23
Serial Module Access Functions .. 25
Real Time Clock Access Functions.. 27
HAL300 CAN Application Layer Functions .. 28
HE200 CAN Application Layer Functions ... 1
HE200 CAN Application Layer Functions ... 30
EEPROM Write Function.. 32
TTL I/O Functions.. 33
USING THE TASKING FLOATING POINT LIBRARY 34

CREATING CUSTOM MAKEFILES 35

CREATING CUSTOM LINKER COMMAND FILES 36

DOS BASED TOOLS 37

USING THE CHIPVIEW DEBUGGER 38

RLOAD.EXE HEX FILE LOADER 39

SAMPLE 196 SLOT ONE CPU SETUP 40

FUNCTION INDEX 41

 3

HE693CPU100 "C" Tool Kit Manual __

Software Installation

Step 1: Tasking (BSO) Compiler, Assembler and Utilities Installation
Follow the directions packaged with the kit to install the compiler, assembler, and utilities.

Step 2: Premia Codewright Editor and Development Environment Installation
Follow the directions to install the 16-bit Windows version of the CodeWrite™ editor. The Tasking environment

does not presently function with the 32-bit version of CodeWright™. You should not install the evaluation version

of Codewright™ since the tool kit provides the full version.

Step 3: Tasking (BSO) Embedded Development Environment Installation
Follow the packaged directions to install the TASKING EDE.

Step 4: Horner Electric Slot One Tool Kit Installation
a) Place the tool kit installation disk in your floppy drive.

b) Using DOS , change to the drive containing the installation floppy (a: or b:)
c) Start the installation program by typing “install [X:\abc]” (no brackets)

 Where X:\abc is an optional drive and directory location for installation of the tool kit.

 If no location is specified, the tool kit is installed to C:\CPU100.

Manual installation can be accomplished by manually copying the directories from the installation floppy to their

desired location.
Note: If this is an upgrade installation, copy any modified files from the tool kit to another location. The

installation will overwrite all toolkit files. Next type install X:\abc -U

 Where X:\abc is the required, current path of the tool kit.

 The -U option installs as an upgrade, the autoexec.bat is not modified.

Step 5: Check Your Autoexec.bat

Check that the path in your autoexec.bat was modified correctly. The …\C196\bin directory should have

been added. Some installations of Tasking’s software have encountered problems in this step. The Horner tool kit

should have added the pctools directory of the tool kit to the path and set the CPU100 environment variable. For

example:

set cpu100=C:\CPU100

path=%path%;C:\CPU100\pctools

 4

HE693CPU100 "C" Tool Kit Manual __

Step 6: Reboot your PC
The Tasking compiler and Horner Electric’s tool kit installation will modify the path and set some environment

variables that are only recognized after a re-boot.

Step 7: Setup Your 90-30 Rack and Slot One CPU Hardware
Follow the GE/Fanuc documentation for connecting the power supply and additional modules to the rack. Consult

the HE693CPU100 hardware documentation for additional information on CPU specific installation. Connect the

serial cable and RS-232 to RS-485 from the PC RS-232 Com port 1 or 2 to the RS-485 port on the 90-30 power

supply.

Step 8: Try Building a Sample Application
Using a DOS shell, change to the “…\examples\leds” directory in the CPU100 tool kit. Type “mk196”. This

will use Tasking’s make utility to build the project based on the information in the “makefile” and the

“blinky.cmd” linker command file. The compiler and linker should indicate there were no errors or warnings.

Step 9: Load and Run the Sample Application
The application must be loaded from the PC into the CPU100’s EEPROM. The Chipview debugger can load and

verify code, but we have included a small DOS utility to make this task faster and easier. From the

“…\examples\leds” directory type “rload.exe blinky.hex 1 38400”. This will load the Intel hex

file into the CPU100 using PC com port 1 at 38400 bits per second. If you have the communication cable

connected to COM 2 change the “1” to a “2”.

The rload utility should show the number of bytes successfully written to the CPU100. If any errors occur, check

the cable connections and repeat the process. Once the load has successfully completed, the application is started.

You should see the LEDs on the CPU100 module blinking in a pattern.

 5

HE693CPU100 "C" Tool Kit Manual __

HE693CPU100 Hardware Setup

CAN_L

CAN_H

SHLD

V-

V+

FGND

CPU CAN
PORTPOWER SUPPLY

TERMINAL

 Earth
 Ground

 AC 120 V
 IN

24 V + Out

24 V - Out

To PC for
Program

Loading and

CPU To Optional
90-30

Expansion
Racks

IRIGB Input for Satellite
Based Time or High

Speed TTL Input

5 4 3 2 1

GE Fanuc
Series 90-30

Note: You will need a RS-485 to RS-232 adapter to connect the CPU100 to your personal computer.
Horner Electric’s HE693SNP232 is sufficient for program loading, but the HE693RSM232 is needed for
debugging or loading with the Chipview® debugger.

HE693CPU100 "C" Tool Kit Manual __

CAN Wiring Rules

1. A CAN network should be wired in a daisy-chained fashion, such that there are

exactly two physical endpoints on the network.

2. The two nodes at the physical endpoints, should have 120Ω terminating resistors

connected across CAN + and CAN -.

3. The data conductors (CAN+ and CAN-) should be a 24 AWG shielded twisted

pair, with 120Ω characteristic impedance.

4. Notice that for a section of cable between two nodes, the cable shield is

connected to the terminal at one end of the cable only.

120Ω

Shield not connected
on one end. PLC END PLC

CAN +
Shield
Data -
Return

HE693CPU100 "C" Tool Kit Manual __

HE693DRT900 Hardware

 The HE693DRT900 is an optional piece of the hardware designed as a communication coprocessor for the
HE693CPU100. The DRT900 adds one standard RS-232 serial port and a second serial port that can be configured
as RS-232 or RS-422. The DRT900 handles all low-level serial communications by providing a 256 byte buffer for
each incoming and outgoing stream. While the DRT900 can handle serial stream up to 57,600 baud, continuous
incoming data at speeds greater than 38400 can cause lost characters due to 90-30 back plane overhead.

Port A Wiring

Pin Signal Name Direction
1 [DCD] Always High Output
2 [TXD] Transmit Data Output
3 [RXD] Receive Data Input
4 No Connection N/A
5 [GND] Signal Ground N/A
6 [DSR] Always High Output
7 [CTS] Clear To Send Input
8 [RTS] Request To

Send
Output

9 [RI] Always High Output

Port B Wiring

Pin Signal Name Direction
1 [CTS] Clear To Send (RS-232) Input
2 [TXD] Transmit Data (RS-232) Output
3 [RXD] Receive Data (RS-232) Input
4 [RTS] Request To Send (RS-232) Output

5 [PWR] 5 VDC Power N/A
6 [RTS-] Request To Send (RS-485) Output
7 [GND] Signal and Power Ground N/A
8 [CTS+] Clear To Send (RS-485) Input
9 [TERM] Termination (RS-485) Input

10 [RXD-] Receive Data (RS-485) Input
11 [RXD+] Receive Data (RS-485) Input
12 [TXD-] Transmit Data (RS-485) Output
13 [TXD+] Transmit Data (RS-485) Output
14 [RTS+] Request To Send (RS-485) Output
15 [CTS-] Clear To Send (RS-485) Input

HE693CPU100 "C" Tool Kit Manual __

Hardware Setup for Example Programs

Note: The examples that use an ANSI terminal are setup for PORT A, 9600 baud, 8 bits, no
parity. These examples show a five slot rack, a ten slot rack may be substituted.

LEDS

CPU

5 4 3 2 1

GE Fanuc
Series 90-30

To Personal

Computer for
Loading and

Debugging

TTL_IO

CPU
TTL Signal

5 4 3 2 1

GE Fanuc
Series 90-30

 To Personal
Computer for
Loading and

Debugging

NVRAM

3 2 1

DRT900

5

ANSI

Terminal

4

GE Fanuc
Series 90-30

CPU
To Personal

Computer for
Loading and

Debugging

 9

HE693CPU100 "C" Tool Kit Manual __

PIF196

HE200

CPU

GE Fanuc
Series 90-30

CPU

To Personal
Computer for
Loading and

Debugging

NODE 1

GE Fanuc
Series 90-30

Optional
Additional 90-30
Expansion Racks

1 2 3 4 5

90-30
OUT

90-30

IN

Ladder code maps
all IGs (from node
1) to Qs CAN Network

NODE 2

Horner Electric
Micro CAN PLC

DRT900

1 2 3 4 5

ANSI

Terminal

90-30

I/O

90-
30
I/O

90-
30
I/O

90-
30
I/O

90-
30
I/O

5 4 3 2 1

GE Fanuc
90-30

90-
30
I/O

90-30

I/O

Any HE200 Compatible
Device

 To Personal
Computer for
Loading and

Debugging

 10

HE693CPU100 "C" Tool Kit Manual __

HAL300

CPU

NODE 1

GE Fanuc
Series 90-30 DRT900

1 2 3 4 5

ANSI

Terminal

CPU

NODE 2

GE Fanuc
Series 90-30

ANSI

Terminal

5 4

DRT900

1 2 3

90-30
OUT

CAN

90-30

IN

To Personal
Computer for
Loading and

Debugging

REALTIME
(Same as NVRAM Hardware)

SSERIAL
(Same as NVRAM Hardware)

TIMERS
(Same as LEDS Hardware)

 11

HE693CPU100 "C" Tool Kit Manual __

Tool Kit Functions

Function Reentrancy
 As the BSO compiler documentation states, some of the library functions are not
reentrant. For example, the function memcpy() is not reentrant in the BSO library. If
memcpy() were executing in the programs main loop, and a timer callback function starting
executing a second copy of memcpy(), data would be corrupted. Functions that access
hardware usually have the same problem. For example, the real time clock access functions, the
PIF 90-30 module access functions, and the serial module access functions should only be called
30from one location: the main loop, timer callback functions, or the HAL network callback
functions.

90-30 Module Access Functions
pif196.h (See PIF Additional Documentation)

The PIF module access functions were originally written for a PC based “rack controller”. None of these racks
contained a CPU and rack number zero did not exist. With the slot one CPU, the CPU resides in rack zero. The
module slot labeled “2” is actually accessed as slot 0 in the access functions. Since the CPU uses slot one, the
available slots are 0 to 8 or 0 to 3 for a ten slot or five slot rack respectively. Expansion and remote racks are still
accessed as slots 0 to 9 or 0 to 4 since these racks do not contain a CPU.

Function Description
init_pif300 Initializes an PIF196 module and interface hardware
auto_cfg Scans for attached I/O racks and modules
get_cfg_file* Gets 12-byte config. file from a smart module
put_cfg_file* Sends 12-byte config. file to a smart module
put_cfg_par* Sends 1 config. parameter to a smart module
get_init_file* Gets n-byte init. file from a smart module
put_init_file* Sends n-byte init. file to a smart module
read_module* Reads I/O data from an input module
write_module* Writes I/O data to an output module

* These functions allow access to smart module configuration and initialization parameters, and are for smart I/O
modules only.

In addition to library functions, the tool kit library provides a data base of constant tables. These tables contain
information about specific types of I/O racks, I/O modules and module configuration parameters as follows:

Table Description
rack_info Contains information about each I/O rack type
module_info Contains information about each I/O module type
par_info Contains information about each parameter type

Appendix B for more information on the data base.

The source code file should #include the PIF196.H header file, to gain access to the library functions and
tables.

Several of the library functions require the caller to pass a special formal parameter called cfg_info.

 12

HE693CPU100 "C" Tool Kit Manual __

This parameter is actually an array of structures which stores I/O configuration information. The information stored
in cfg_info includes the following:

1. The type(s) of I/O racks connected to the IC693PIF300,
2. The type(s) of I/O modules in each slot of each I/O rack,
3. A 12-byte configuration file for each (smart) module.

The user's application program should declare the cfg_info array of structures as follows:

struct
 {
 unsigned short rack_type; /* Rack type */
 struct
 {
 unsigned short board_id; /* Module type */
 unsigned short param[12]; /* Configuration file */
 } module[10];
 } cfg_info[5]; /* Rack 0 to 4 */

Note that PIF196.H defines a special typedef, called CFG_TYPE, so that cfg_info may be declared more
easily, as follows:

CFG_TYPE cfg_info[5]; /* Rack 0 to 4 */

The following C constructs show how information within cfg_info is accessed:

cfg_info[rack].rack_type

Stores a value from 0 to (num_rack_types-1) corresponding to the type of connected I/O rack whose DIP switches
are set for the specified rack. Refer to the PIF196.H for a list of rack types.

cfg_info[rack].module[slot].board_id

Stores a value from 0 to (num_ids-1) corresponding to the type of I/O module plugged into the specified slot of the
specified rack. Refer to PIF196.H for a complete list of board IDs for supported I/O modules. A board_id
value of 32 or higher indicates that the module is a smart I/O module.

cfg_info[rack].module[slot].param[par]

Stores one of up to 12 configuration parameters associated with the module plugged into the specified slot of the
specified rack. As stated before, only smart modules make use of configuration parameters.

Function Descriptions

init_pif300()
Function Call: status = init_pif300 (port_addr);
Input(s): port_addr
 base address must be 0xFFF8
Output(s): status
 0 if PIF196 initialization went OK;
 1 if PIF196 not found;
 2 if function argument is bad
Description: This routine initializes the PIF196 software module and the
90-30 backplane interface hardware.

 13

HE693CPU100 "C" Tool Kit Manual __

auto_cfg()
Function Call: status = auto_cfg (cfg_info);
Input(s): none
Output(s): status
 0 if auto configuration went OK;
 1 if PIF196 not initialized;
 3 if parity error occurred

 cfg_info
 Array of structures containing rack and slot
 information for the present configuration
Description: This routine scans all racks/slots on the 90-30 rack and
expansion bus and loads the cfg_info array of structures with rack type,
module type and configuration parameter information for all connected
hardware.

*** C A U T I O N ***
The auto_cfg() function should only be called when the RUN output is OFF.
Otherwise, it may write random data to output modules.

get_cfg_file()
Call: status = get_cfg_file (cfg_info, rack, slot);
Input(s): cfg_info
 Array of structures containing rack and slot
 information for the present configuration

 rack
 0 to 4 for rack whose configuration will be read

 slot
 0 to 9 for slot whose configuration will be read
Output(s): LSB of status
 0 if configuration file read went OK;
 1 if PIF196 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred

 MSB of status
 0 if status LSB isn't 4;
 Module's current board ID if status LSB is 4

 cfg_info[rack].module[slot].param
 12-word array loaded with 11-byte configura-
 tion file and 1-byte initialization file
 size received from the module
Description: This routine reads the 11-byte configuration file and the 1-
byte initialization file size from a smart I/O module. A smart I/O module is
one whose board ID is 32 or higher.

The 11-byte configuration file is loaded into the 1st 11 words of the module's
param array. The 1-byte initialization file size is loaded into the 12th
word of the module's param array.

put_cfg_file()
Call: status = put_cfg_file (cfg_info, rack, slot);
Input(s): cfg_info

 14

HE693CPU100 "C" Tool Kit Manual __

 Array of structures containing rack and slot
 information for the present configuration
 rack
 0 to 4 for rack whose configuration will be written
 slot
 0 to 9 for slot to be configured
 cfg_info[rack].module[slot].param
 12-word array whose first 11 words are to be

Output(s): LSB of status

 sent to the module's 11-byte configuration file

 0 if configuration file write went OK;
 1 if PIF196 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred;

 MSB of status
 0 if status LSB isn't 4;
 Module's current board ID if status LSB is 4
Description: This routine sends a 11-byte configuration file to a smart I/O
module. A smart I/O module is one whose board ID is 32 or higher.

The put_cfg_file() function can NOT be used to configure a smart I/O module
which stores its parameters in its own NVRAM, such as the ASCII-Basic Module
(HE693ASCxxx). Use put_cfg_par() to configure this type of module.

put_cfg_par()
Call: status = put_cfg_par (cfg_info, rack, slot, par);
Input(s): cfg_info
 Array of structures containing rack and slot
 information for the present configuration

 rack
 0 to 4 for rack whose configuration parameter
 will be updated

 slot
 0 to 9 for slot to write parameter to

 par
 0 to 10 for parameter to be configured

 cfg_info[rack].module[slot].param[par]
 Contains configuration parameter to be sent to

Output(s): LSB of status

 the module

 0 if configuration parameter write went OK;
 1 if PIF196 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred;

 MSB of status
 0 if status LSB isn't 4;

Description: This routine sends a single configuration parameter to a smart
I/O module. A smart I/O module is one whose board ID is 32 or higher.

 Module's current board ID if status LSB is 4

 15

HE693CPU100 "C" Tool Kit Manual __

Note that calling the put_cfg_par() function, is the ONLY way to modify a
configuration parameter, for a smart I/O module which stores its parameters
in its own NVRAM.

Of the I/O modules supported in the current software release, only the
following modules fall into this category:

HE693ASCxxx ASCII-Basic Module
HE693NET485 PID network module
HE693PIDNET PID network module

get_init_file()
Call: status = get_init_file (cfg_info, rack, slot, buf);
Input(s): cfg_info
 Array of structures containing rack and slot
 information for the present configuration

 rack
 0 to 4 for rack whose initialization file will
 be read
 slot
 0 to 9 for slot whose initialization file will
 be read
Output(s): LSB of status
 0 if initialization file read went OK;
 1 if PIF196 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred

 MSB of status
 0 if status LSB isn't 4;
 Module's current board ID if status LSB is 4

 Array pointed to by buf
 n-byte array loaded with initialization file
 received from the module
Description: This routine reads the n-byte initialization file from a GE
smart I/O module. A GE smart I/O module is one whose part number begins with
IC693.

 16

HE693CPU100 "C" Tool Kit Manual __

put_init_file()
Call: status = put_init_file (cfg_info, rack, slot, buf);
Input(s): cfg_info
 Array of structures containing rack and slot
 information for the present configuration

 rack
 0 to 4 for rack whose initialization file will be written

 slot
 0 to 9 for slot whose initialization file will be written

 Array pointed to by buf
 n-byte array containing initialization file to
 be sent to the module
Output(s): LSB of status
 0 if initialization file write went OK;
 1 if IC693PIF300 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred;

 MSB of status
 0 if status LSB isn't 4;
 Module's current board ID if status LSB is 4
Description: This routine sends an n-byte initialization file to a GE smart
I/O module. A GE smart I/O module is one whose board ID is 32 or higher and
whose model number begins with IC693.

read_module()
Function Call: status =
 read_module (cfg_info, rack, slot, buf);
Input(s): cfg_info
 Array of structures containing rack and slot
 information for the present configuration

 rack
 0 to 4 for rack whose configuration will be read

 slot
 0 to 9 for slot to be read
Output(s): LSB of status
 0 if read went OK;
 1 if PIF196 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred

 MSB of status
 0 if status LSB isn't 4;
 Module's current board ID if status LSB is 4

 Array pointed to by buf
 Loaded with 1 to N words of data depending on
 the the module type
Description: This routine reads all data from an input module.

 17

HE693CPU100 "C" Tool Kit Manual __

The number of %I and %AI data words read from the module depends on the
module's board ID, and can be calculated as follows:

i_ai_words_read = ((module_info[board_id].num_i + 8) / 16) +
 module_info[board_id].num_ai;

If module_info[board_id].regio is TRUE, the module supports register I/O and
the module's 1st configuration parameter contains the number of register (%R)
input bytes. The total number of data words read from the module is then as
follows:

total_words_read = i_ai_words_read +
 cfg_info[rack].module[slot].params[0] / 2;

If a module has more than one type of input (I, AI and/or RI), they will be
returned in the buffer in the following order: I words, AI words, RI words.

write_module()
Call: status =
 write_module (cfg_info, rack, slot, buf);
Input(s): cfg_info
 Array of structures containing rack and slot
 information for the present configuration

 rack
 0 to 4 for rack whose configuration will be read

 slot
 0 to 9 for slot to be written

 Array pointed to by buf
 Contains 1 to N words of data depending on the
 the module type
Output(s): LSB of status
 0 if write went OK;
 1 if PIF196 not initialized;
 2 if function argument is bad;
 3 if parity error occurred;
 4 if board ID error occurred;
 5 if RUN output is disabled

 MSB of status
 0 if status LSB isn't 4;
 Module's current board ID if status LSB is 4

 18

HE693CPU100 "C" Tool Kit Manual __

Description: This routine writes all data to an output module.

The number of %Q and %AQ data words written to the module depends on the
module's board ID and can be calculated as follows:

q_aq_words_written = ((module_info[board_id].num_q + 8) / 16) +
 module_info[board_id].num_aq;

If module_info[board_id].regio is TRUE, the module supports register I/O and
the module's 2nd configuration parameter contains the number of register(%R)
output bytes. The total number of data words written to the module is then as
follows:

total_words_written = q_aq_words_written +
 cfg_info[rack].module[slot].params[1] / 2;

If a module has more than one type of output (Q, AQ and/or RQ), they should
be placed in the buffer in the following order: Q words, AQ words, RQ
words.

PIF196 Table Descriptions

Table Name: rack_info
Table Access: rack_info[rack_type].str
 14-character rack descriptor string

 rack_info[rack_type].num_slots
 Number of I/O module slots in the rack

 rack_info[rack_type].speed
 LO_SPEED (0) if rack communicates at 250 KHz;

Where: rack_type

 HI_SPEED (1) if rack communicates at 1 MHz

Description: The rack_info constant array of structures provides
information about each type of I/O rack.

 Rack type from 0 to (num_rack_types - 1)

Table Name: module_info

Table Access: module_info[board_id].str
 14-character null-terminated module descriptor
 string

 module_info[board_id].num_i
 Number of digital input bits

 module_info[board_id].num_ai
 Number of analog input words

 module_info[board_id].num_q
 Number of digital output bits

 module_info[board_id].num_aq
 Number of analog output words

 module_info[board_id].num_par

 19

HE693CPU100 "C" Tool Kit Manual __

 Number of configuration parameters

 module_info[board_id].regio
 TRUE if module supports register (%R) I/O

 module_info[board_id].nvram
 TRUE if module keeps parameters in its own NVRAM

 module_info[board_id].par_type
 Index of module's 1st parameter in par_info

Where: board_id
 Module type from 0 to (num_ids - 1)

Description: The module_info constant array of structures provides
information for each supported module type.

Note that a board ID of 32 or higher indicates a smart I/O module. Only a
smart module can have configuration parameters.

For smart modules with configuration parameters, module_info tells how many
parameters there are (num_par), whether or not they support register I/O
(regio), where they are saved (nvram), and where to find more informatation
about the parameters in par_info (par_type).

If module_info[board_id].regio is TRUE, the first two configuration
parameters contain the number of %R register input and output bytes
respectively.

Table Name: par_info

Table Access: par_info[par_type].str
 14-character null-terminated parameter de-
 scriptor string

 par_info[par_type].deflt
 Parameter's default numeric value

 par_info[par_type].lolim
 Parameter's minimum numeric value

 par_info[par_type].hilim
 Parameter's maximum numeric value

 par_info[par_type].str_index
 0xffff if parameter is not enumerated;
 Otherwise, indexes 1st string of enumerated
 parameter's value string list in str_info

Where: par_type
 Parameter type from 0 to (num_par_types - 1)
 obtained from module_info[board_id].par_type

Description: The par_info constant array of structures provides information
for each configuration parameter.

Note that some parameters are enumerated, and some are not.

 20

HE693CPU100 "C" Tool Kit Manual __

All parameters have a numeric value from lolim to hilim inclusive.

An enumerated parameter always has a lolim of 0, and also has a unique
character string, which corresponds to each possible numeric value.

Note that par_info[par_type].str_index indexes the string in str_info, which
corresponds to the parameter's numeric value of zero.

 21

HE693CPU100 "C" Tool Kit Manual __

LED Control Functions
pif196.h

 These functions allow access to the various LEDs on the 90-30 power supply and the CPU module. Please note that
when run_off() is called the outputs can not be changed until run_on() is called. If the HAL CAN protocol is used,
the hal() function sets the Network Status LED to flash green/red when receiving/sending data, turn red when no power is
applied to the CAN port, and flash red when there are excessive network errors.

WORD run_on(void)
 This function turns on the green RUN LED on the 90-30 power supply and sends a signal to the modules that the
CPU is in RUN mode. This function should return RUNNING unless there is a hardware fault.

WORD run_off(void)
 This function turns off the green RUN LED on the 90-30 power supply and removes the signal to the modules that
the CPU is running. Output modules will not be updated when run is turned off. The DRT900 serial module will continue to
function when run is off. This function should return RUNNING unless there is a hardware fault.

WORD run_check(void)
 This function checks the running status (RUN indicator to the modules) and returns the defined value of RUNNING
or NOT_RUNNING.

void ok_led(int stat)
 This function sets or clears the green OK LED on 90-30 power supply. The LED is turned on if stat is set to
TRUE (non-zero), and is turned off if stat is set to FALSE (zero).

void batt_led(int stat)

This function sets or clears the red BATT LED on 90-30 power supply. The LED is turned on if stat is set to
TRUE (non-zero), and is turned off if stat is set to FALSE (zero). The battery in the 90-30 power supply is not used for
this CPU, and the state of the real time clock battery is not determinably by the CPU. Therefore, this LED can be used as
needed by the user.

leds.h

void LedInit(void)
 This function sets up a timer for LED blinking and performs a LED test. This LED test conforms to the
initialization standards setup for DeviceNet devices. Note: this function should be called after TimerInit() since is uses
one timer for blinking the LEDs as needed.

void SetLed(WORD led_command)
 This function allows the NS (Network Status) and MS (Module Status) LEDs on the CPU module to be changed.
Each LED has a red and green element that can be illuminated. The possible values are defined in the leds.h header file.

 22

HE693CPU100 "C" Tool Kit Manual __

Virtual Timer Functions
timers.h

 These function provide access to virtual timers that are based on one of the CPU’s hardware timers (Timer 2 and
EPA channel 0). These functions provide a very flexible means for timing events that are often very important in control
applications.

TimerInit()

Call: int TimerInit(int timebase)
Input(s): timebase - The desired timer resolution (in uS

assuming 16 MHz crystal, must be >= 100);
Return value: the timebase (may have been set previously)
Description: This routine sets the timer2 prescaler and
 epa0 reload value for the desired timebase.
 If the timebase was set previously, the original
 timebase is unaffected, but it is returned.

 The main program must call enable() to globally

 enable interrupts after calling TimerInit().

get_timebase()
Call: int get_timebase(void)
Input(s): none
Return value: current timer timebase in microseconds
Description: This function allows a module to determine the current timebase at
 any time.

AllocateTimer()
Call: int AllocateTimer(int config, TIMER_TYPE compare,
 (void *) func)
Input(s): config - a bit-mapped value defined as follows:
 Bit 0 = ignored (set to 0)
 Bit 1 = run (0=alloc only, 1=alloc and start)
 Bit 2 = dir (0=down, 1=up)
 Bit 3 = auto restart (restart timer @ compare)
 Bit 4 = func trigger (call func @ compare)
 Bits 5-15 = reserved (set to 0)
 compare - If configured for auto restart or func trigger,
 this is the timer compare value for up counting timers, or
 it is the reload value for down counting timers.
 func - A pointer to a user function to be called at
 timer expiration (if func trigger is enabled).
Output(s): 0 to (NUM_TIMERS-1) - Allocated timer FAILURE (-1) if no
 timers available, or bad parameter.
Description: This function scans the TimerTab to find the first available
unallocated timer, allocates it and returns the timer number. If no timers are
available, FAILURE (-1) is returned.

 23

HE693CPU100 "C" Tool Kit Manual __

ReleaseTimer()
Call: int ReleaseTimer(int timer_num)
Input(s): The timer number to return to the timer pool
Output(s): 0 for success FAILURE (-1) if specified timer was not
 allocated
Description: This function returns the specified timer_num to the timer pool.

StartTimer()
Call: TIMER_TYPE StartTimer(int timer_num)
Input(s): 0 to (NUM_TIMERS-1), the desired timer to start (this is the
 value returned by GetTimer()).
Output(s): The specified timer's current value. FAILURE (-1) any of the
 following conditions are TRUE:
 The specified timer is invalid (>= NUM_TIMERS)
 The specified timer is not allocated
Description: This function starts a halted timer. If the timer is invalid or
unallocated, FAILURE (-1) is returned. Otherwise, the timer's current value is
returned.

StopTimer()
Call: TIMER_TYPE StopTimer(int timer_num)
Input(s): 0 to (NUM_TIMERS-1), the desired timer to stop (this is the
 value returned by GetTimer()).
Output(s): The specified timer's current value. FAILURE (-1) any of the
 following conditions are TRUE:
 The specified timer is invalid (>= NUM_TIMERS)
 The specified timer is not allocated
Description: This function stops a running timer. If the timer is invalid or
unallocated, FAILURE (-1) is returned. Otherwise, the timer's current value is
returned.

SetTimer()
Call: int SetTimer(int timer_num, TIMER_TYPE timer_val)
Input(s): timer_num - the timer to be manipulated timer_val- the
 value to set timer_num to
Output(s): 0 = success FAILURE (-1) if the specified timer_num is
 unallocated
Description: This function simply writes the timer_val to the specified
timer_num. Timer operation is unaffected.

GetTimer()
Call: TIMER_TYPE GetTimer(int timer_num)
Input(s): timer_num - the timer to be read
Output(s): 0 = success FAILURE (-1) if the specified timer_num is
 unallocated
Description: This function simply reads the specified timer and returns it's
current value.

 24

HE693CPU100 "C" Tool Kit Manual __

Serial Module Access Functions
sserial.h

 These functions allow accessing the DRT900 serial module to send or receive serial data. When putch() or
sputchar() is called the character to be transmitted is sent across the 90-30 backplane to the DRT900 module where it is
placed in a 256 byte FIFO (First In First Out) buffer. The processor on the DRT900 then transmits the character out the
desired serial port. When a character is received by the DRT900, it places it in another 256 byte FIFO buffer. When getch()
or sgetchar() is called it request the byte across the 90-30 backplane and the function is able to return the character.

Note: After calling init_pif300() and before calling autocfg() the variable sserial_slot needs to be set with
the logical slot number where the DRT900 serial module is placed. The logical slot is the number as labeled minus 2. For
example, if the DRT900 module were placed in the slot labeled “9”, the following would be used to initialize it:
 init_pif300(0xfff8);
 sserial_slot = 7; /* slot 9 - 2 = 7 */

void com(int port)
 This function selects the serial communication port to direct all initializations, character input and output. Setting
port to 2 directs stdout, stdin and stderr to the DRT900 serial module’s port A. While setting the port to 3
directs stdout, stdin, and stderr to port B.

int set_com_led(int value)
 This functional allows the RUN LED on the DRT900 serial module to be turned on or off. When value is zero
(FALSE) the LED is turned off. When value is non-zero (TRUE) the LED is turned on. This function is not affected by the
com() function.

 25

HE693CPU100 "C" Tool Kit Manual __

int initcom(int slot, int baud, int param)
 This function initializes the serial communication port that was last selected by the com() function. The slot
number should be the rack's label for the slot where the DRT900 serial module is placed. The baud rates are defined in
sserial.h in a range from BAUD_600 to BAUD_57600. The param variable should be set using one or more of the
parameters ORed together found in sserial.h. Com 3 or port B can be setup as a RS-485 port by passing the RS485
parameter. Without this parameter this port functions as an additional RS-232 port.

Baud Rate Parameters Define in sserial.h
BAUD_600
BAUD_1200
BAUD_2400
BAUD_4800
BAUD_9600
BAUD_19200
BAUD_38400
BAUD_57600

Communication Parameters Define in sserial.h
ONE_STOP Sets the serial communication port to use 1 stop bit.
TWO_STOP Sets the serial communication port to use 2 stop bit.

DATA_7 Sets the serial communication port to use 7 data bits.
DATA_8 Sets the serial communication port to use 8 data bits.

NONE Sets the serial communication port to use no parity bits.
ODD Sets the serial communication port to use odd parity bits.
EVEN Sets the serial communication port to use even parity bits.

HS_NONE Sets the serial communication port to use no handshaking.
HS_SW Sets the serial communication port to use software handshaking.
HS_HW Sets the serial communication port to use hardware handshaking.
HS_MD Sets the serial communication port to use multidrop handshaking. (For RS-485 port B only)

TX_OFF Turns the serial transmitter OFF.
TX_ON Turns the serial transmitter ON.
TX_CTS Turns the serial transmitter ON based on the CTS signal.
TX_RTS Turns the serial transmitter ON based on the RTS signal.

RS485 Sets the port for RS485. (Port B only)

int scheckchar(void)
 This function returns the number of incoming bytes waiting in the receive buffer for the port set by the com()
function.

int sgetchar(void) - getch()
 This function returns one character from the receive buffer selected by the com() function. Calling getch() or
any ANSI calls that reads stdin will call this function. Note: getch() waits for a character by calling scheckchar()
until a character is received then calls sgetchar().

int sputchar(void) - putch()
 This function places one character in the transmit buffer. This character will be sent to the port selected by the
com() function. This function returns zero if no error occurred. Calling putch() or any other ANSI calls that write to
stdout or stderr will call this function.

 26

HE693CPU100 "C" Tool Kit Manual __

Real Time Clock Access Functions
realtime.h

 The Slot One CPU contains a battery backed real time clock. In addition to providing time of day and date, the real
time clock provides the number of seconds since power was applied to the CPU. This data is requested with the uptime()
function. Time is requested using the ANSI standard time() function and is set using the stime() function.

time_t time(time_t *timer)
 This function is the harware specific version of the ANSI time() function. The current time in seconds since
00:00:00 January 1, 1970 is returned and is stored in the location pointed to by timer. This real time clock is set using the
stime() function. Note: This function is defined in the ANSI header time.h.

time_t uptime(void)
 This function returns the number of seconds since power was applied to the CPU module. Brief interruptions in
power may or may not reset this clock.

int stime(time_t new_time)
 This function sets the real time clock. The value passed in the new_time variable should contain the number of
seconds since 00:00:00 January 1, 1970. This function returns zero on success. This real time clock is accessed using the
time() function.

 27

HE693CPU100 "C" Tool Kit Manual __

HAL300 CAN Application Layer Functions
hal300.h

 This CAN application layer is provided to allow communication and data sharing between many CPU modules.
This network protocol can be used for time and data synchronization, data and resource sharing, or information collection.
This protocol allows two types of communications: fast, efficient broadcasts of small amounts of data, or a complex (and less
efficient) command and response message packets.

The fast message type allows 8 different types (0, 1, 2, 3, 4, 5, 6, 7) of 8 byte packets to be broadcast, received, or
requested. The message types are defined by the user’s application. This message type is not only simple but has no
overhead except that required of all CAN messages.

The “command” message type allows 256 different commands to be transmitted with theoretically 65,536 bytes of
data. Each command can have a response. This command response arrangement is only suggested and the function numbers
and data are defined by the user’s application. A command can be sent and not receive a response, and a response can be
sent without receiving a command first. This aspect of the protocol is up to the application designer.

As an example: When HalPutCommand() is called, a CAN message is generated and is broadcast onto the
network. The node that was intended to receive the message decodes the message and calls the user written function
HalGotCommand(). This function is passed the sending node’s ID number, the function number, the number of data
bytes, and a pointer to the data. The user must decide how to handle this incoming data in the HalGotCommand().

Note: The node ID zero (0) is reserved for global request and transmissions. Fast data request and commands can be sent
to all nodes on a network by setting the node_id to zero.

void HalInit (BYTE node_id, BYTE baud_rate)
 This function initializes the CAN hardware and the application layer software (hal300). The node_id should be a
value from 1 to 30 and should be unique to the network. Values for the baud rate are defined in Hal.h and are as follows:
CAN_BAUD_125K, CAN_BAUD_250K or CAN_BAUD_500K.

void Hal (void)
 This function monitors for loss of power and updates the status of the LEDs on the CPU module. This function
should be called in the application’s main loop.

BOOL HalPutCommand (BYTE node_id, BYTE function, WORD count, BYTE *data)
 This function uses the smart protocol to transmit user data to another node. A function number is also attached and
can be assigned as needed in the application. The value of node_id is the node that is to receive the command.

BOOL HalPutResponse (BYTE node_id, BYTE function, WORD count, BYTE *data)
 This function uses the smart protocol to send a response to a command. The function number was designed to equal
that of the original command. The function does not have to be called after a command is received. The command /
response organization is suggested, but is not required for the application layer to work.

BOOL HalPutDataReq (BYTE node_id, BYTE type)
 This functions uses the fast protocol to request data from the node specified by node_id. This function can
request input or output data based on the value passed to type. After the request the other nodes will broadcast up to 8
bytes to ALL other nodes on the network.

BOOL HalPutData (BYTE type, BYTE count, BYTE *data)
 This function uses the fast protocol to broadcast up to 8 bytes of data to the other nodes on the network. The sate of
inputs or outputs can broadcast based on the value of type. This function does not have to be called in response to a
request. Data can be sent on a time or change of state basis as needed by the application.

 28

HE693CPU100 "C" Tool Kit Manual __

Functions Contained in the User Application Program (User written function called by HAL300.c)

Note: These user written function are called from within the CAN receive interrupt. These functions should be as fast as
possible to prevent missing new incoming CAN messages of the same type. Because these function do occur
asynchronously to other processes, care should be taken when accessing hardware from within these function.

For example, if you main loop is reading a 90-30 module, HalGotCommand() should not print a character to the
serial module. If your main loop were in the middle of reading the 90-30 module when a CAN message was received, you
would attempt to transmit data to the serial module, possibly corrupting the data that was being read in the main loop.

As a general rule do not read or write 90-30 modules, print or request serial data, send CAN data, or set or read the
real time clock from these CAN function or timer callback functions.

void HalGotCommand (BYTE node_id, BYTE function, WORD count, BYTE *data)
 This function is call when a command is received from another node on the network. The sender’s node is passed
in the node_id variable. The function number and data are defined by the application.

void HalGotResponse (BYTE node_id, BYTE function, WORD count, BYTE *data)
 This function is called when a response is received from another node. The sender’s node is passed in the
node_id variable. The function number and data are defined by the application.

void HalGotDataReq (BYTE type)
 This function is called when fast data is requested by another node on the network. The data requested can be input
or output depending on the type variable defined in hal.h. This request was designed to be followed by a
HalPutData() function call to broadcast the requested data to any node on the network that requires the data.

void HalGotData (BYTE node_id, BYTE type, BYTE count, BYTE *data)
 This function is called when another node on the network broadcasts it’s data using the HalPutData() function.
The sender’s node is passed in the node_id variable. The type is defined in hal.h as an input or output type, and a low or
high section of data.

NODE 1

Library User Functions

HalGotResponse() HalPutResponse()

CAN

Hardware

HalGotCommand() HalPutCommand()

User Functions Library

NODE 2

 29

HE693CPU100 "C" Tool Kit Manual __

HE200 CAN Application Layer Functions
he200.h

The HE200 CAN protocol is an efficient, simple protocol used in Horner Electric CAN devices such as the MICRO
CAN PLC. Currently HE200 devices only operate at 125K baud to provide the most noise immunity and the
greatest network distance. Currently, this protocol is best for sharing small amounts of digital data between a large
number of CAN devices (up to 253).

He200Init()
Call: void He200Init(BYTE node_id, BYTE baud_rate);
Input(s): node_id - unique node number assigned to the unit
 baud_rate - CAN baud rate to use for communication
 defined in can196.h as CAN_BAUD_125K, CAN_BAUD_250K, or
 CAN_BAUD_500K
Output(s): None
Description: This function initializes the CAN hardware and the application
layer software (HE200). The node_id should be a value from 1 to 253 and should be
unique to the network.

network_send()
Call: void network_send(BYTE id, WORD, data);
Input(s): id - network id of the sender - this should be the unit’s
 ID, but can be any unused ID on the network
 data - 16 bits of data to broadcast to other nodes.
Output(s): None
Description: This function broadcast 16 global data bits to all other nodes on
the network using the supplied network ID.

network_request()
Call: void network_request(BYTE id);
Input(s): id - network ID of the node to request data from
Output(s): None
Description: This function sends a request for global data to a node on the
twork. ne

Global Variables Used in the Application Layer
Variable: WORD network_data[254]
 This is an array of global data from all nodes on the network. When global
data is received from another node it is immediately placed in this array. The
array index is equal to the node number. For example, the global data for node 9 is
store in network_data[9].

Variable: BYTE network_requested
 This byte is set TRUE when another node request a unit’s global data. When
this byte is set TRUE, the user’s application should send the data using
network_send() and then should set network_requested FALSE.

Variable: BYTE can_off_detected
 This byte is set TRUE when a CAN bus off condition occurs.

 30

HE693CPU100 "C" Tool Kit Manual __

Variable: BYTE connect_id
Variable: BYTE remote_mode
 These bytes are used to control the host data communication state.
 Note: These are only used by advanced host tools (see below).

Communication State connect_id remote_mode
Local unit’s ID FALSE
Pass-Thru not the unit’s ID FALSE
Remote not the unit’s ID TRUE

In local mode, the unit is receiving host commands from a source other than the CAN
port (serial port, dual port ram …).
In pass-thru mode, the unit is receiving commands from a source other than the CAN
rt, but the commands are actually for another unit on the network po

Host Tool Command Support Functions
(These functions are for more advanced supervisory tools)

chknet()
Call: BYTE chknet(void);
Input(s): None
Output(s): TRUE if the buffer contains data from another node.
 FALSE if the buffer is empty.
Description: This function checks the host data buffer for a empty or non-empty
state.

getnet()
Call: BYTE getnet(void);
Input(s): None
Output(s): The next byte in the host data buffer
Description: This function removes and returns one byte from the host data
buffer.

putnet()
Call: void putnet(BYTE ch);
Input(s): ch - a single character to send as host data
Output(s): None
Description: This function sends a single byte as a HOST to NODE or NODE to
HOST data packet depending on the current state.

putnet_buf()
Call: void putnet(BYTE *buff, BYTE num);
Input(s): buff - pointer to the data to send
 num - number of data bytes to send (1 to 7)
Output(s): None
Description: This function sends up to seven bytes as a HOST to NODE or NODE to
HOST data packet depending on the current state.

flushnet()
Call: void flushnet(void);
Input(s): None
Output(s): None
Description: This function sets the host data buffer as empty.

 31

HE693CPU100 "C" Tool Kit Manual __

EEPROM Write Function
nvram.h

void nv_write(BYTE *dst, BYTE *src, WORD length)
 This function copies a variable number of bytes (determined by length) from the source pointer to the destination
pointer (pointing to a location in EEPROM). This function only prevents over writing the “ROM” debugger and will
overwrite user code if improperly used. Note: Writing each byte can take up to 10 milliseconds, and interrupts are disabled
during this time. Therefor, writing to EEPROM should happen only during a non-time-critical periods.

 32

HE693CPU100 "C" Tool Kit Manual __

TTL I/O Functions
ttl_io.h

The high-speed TTL I/O port on the CPU100 was first designed as an input for an IRIGB time signal. The
following functions allow this port to be used as a TTL input or output port. While the TTL port is protected
against noise and over-voltage, this port is not isolated and will be damaged if care is not taken. The port is very
limited as an output. The circuitry used to protect the port as an input limits the output current to about 50 micro-
Amps sinking and about 300 micro-Amps sourcing.

init_ttl_in()
Function Call: status = init_ttl_in (void *func, int edge);
Input(s): func
 User function to call when an edge is detected.
 edge
 Edge type define in ttl_io.h:
 NO_CAPTURE = edges are ignored
 NEG_EDGE = low to high pulses cause the function to be
 called
 POS_EDGE = high to low pulses cause the function to be
 called
 BOTH_EDGED = any edge at the input causes the function to
 be called.
Output(s): status
 0 if init went OK

Description: This function initializes the TTL input port to call a user
callback function when the inputs senses a rising and / or falling edge.

 non-zero if an error occurred

read_ttl_port()
Function Call: status = read_ttl_port (void);
Input(s): NONE
Output(s): status
 0 if the TTL input is LOW
 non-zero if the TTL input is HIGH
Description: This function reads the logic level of the TTL input.

init_ttl_out()
Function Call: status = init_ttl_in (void);
Input(s): NONE
Output(s): status
 0 if init went OK
Description: This function initializes the TTL port as a push/pull output.

write_ttl_port()
Function Call: write_ttl_port (BOOL state);
Input(s): state
 0 sets the output LOW

Output(s): NONE

 non-zero sets the output high

Description: This function changes the state of the TTL output.

 33

HE693CPU100 "C" Tool Kit Manual __

Using the Tasking Floating Point Library

To use floating point calculations:

• Note: fpinit() does not need to be called if the default (OMF(2)) object files are used.

• The floating point library fpal96.lib should be added to your link list (see Creating Linker Command
Files).

Note: If any of the following functions are used, the c96fp.lib library should be added to your link list before
the c96.lib, in addition to the fpal96.lib.

acos(), cos(), cosh(), asin(), sin(), sinh(), atan(), tan(), tanh(), atan2()
ceil(), floor(), fmod(), exp(), log(), log10(), ldexp(), pow(), sqrt(), fabs()
atof(), strtod(), frexp(), modf()

If any of the following print or scan routines are used with %f, %g, or %e floating point formats, the c96fp.lib
library should be linked to provide floating point printing and scanning support.

printf(), sprintf(), fprintf(), vfprintf(), vprintf(), vsprintf(), scanf(),
sscanf(), fscanf()

 34

HE693CPU100 "C" Tool Kit Manual __

Creating Custom Makefiles

= marks a comment line
\ = continues to the next line

file: makefile

ABS_dependencies = \
 makefile \
 zzzz.cmd \
 xxx1.obj \
 xxx2.obj \
 ..\..\lib\hecpu100.lib

ASM_switches = debug source symbols xref

C_switches = debug code regconserve model(CA) pl(32767) pw(132)

Create zzzz.hex from zzzz.abs absolute file.
zzzz.hex: zzzz.abs
 OH196 zzzz.abs to zzzz.hex

Create zzzz.ABS from its constituent .OBJ modules.
zzzz.abs: $(ABS_dependencies)
 rl196 & < zzzz.cmd

Compile xxx1.c into xxx1.obj using the
compiler switches defined above
Compiles if xxx1.c or xxx1.h changes.
xxx1.obj: xxx1.c xxx1.h
 c196 xxx1.c $(C_switches)

Compile xxx2.c into xxx2.obj using the
compiler switches defined above
Compiles if xxx2.c, xxx2.h or xxx1.h changes.
xxx1.obj: xxx2.c xxx2.h xxx1.h
 c196 xxx2.c $(C_switches)

These section compile the C source code using the
command line switches defined by C_switches.
The compiler creates .obj files. The dependencies
must be determined and added as shown.

In the line xxx1.obj: xxx1.c xxx1.h
xxx1.obj is the compiler output
xxx1.c and xxx1.h are the defined dependencies.

Links the object files defined in the linker command
file (zzzz.cmd). This link is dependent on the
ABS_dependencies defined above.

Creates an Intel hex format version of the linker
output if zzzz.abs changes.

Set the command line switches
for the compiler.

This defines the dependencies for the output
file. If any of these files change, the project is
re-linked, creating a new zzzz.abs and
zzzz.hex.

Set the command line switches
for the assembler.

 35

HE693CPU100 "C" Tool Kit Manual __

Creating Custom Linker Command Files

& = continue to next line

File: zzzz.cmd

xxx1.OBJ, &
xxx2.OBJ, &

..\..\lib\HECPU100.LIB(RISM), &
..\..\lib\HECPU100.LIB, &

CA_SFRS.OBJ, &
KR\C96.LIB &

TO zzzz.ABS &

MODEL(ca) &

STACKSIZE (+20) &

RAM(30H-43H) &
RAM(100H-1FFH) &
RAM(200H-3FFH(STACK)) &
RAM(400H-4FFH) &
RAM(500H-1EFFH) &
RAM(202FH-202FH) &
RAM(9FF0H-9FFFH) &
RAM(0A000H-0FFFFH) &
ROM(2000H-202EH) &
ROM(2030H-9FEFH) &

PAGEWIDTH(132) &
IXREF

Linker options:
pagewidth(132) = ouput map file in 132 character wide format.
Ixref = intermodule cross reference in map file.

See Tasking documentation for these and other options.

RAM and ROM locations for this platform.
Do not change this.

Use the Compilers stack size suggestion, plus 20 extra bytes.

Processor model - DO NOT CHANGE.

Name of the output file.

Tasking (BSO) ANSI C library functions. If you use floating
point match see the Tasking directions for the correct library to
add for floating point support.

CPU100 library functions including a forced link on the “ROM
debugger.

User object file from compiled or assembled code.

 36

HE693CPU100 "C" Tool Kit Manual __

DOS Based Tools

The PCTOOLS directory in the Horner tool kit contains some DOS based utilities that may be
useful for application development. The installation should have added the PCTOOLS directory
to your path so these commands should execute from any directory.

RLOAD.EXE
 This is a serial hex loader for the HE693CPU100. This allows a user to load an Intel hex
formatted file into the CPU100 using the serial port on the power supply. See the RLOAD.EXE
documentation in the following pages for more details.

TERM.EXE
 This is a simple terminal emulator for DOS. Many of the example programs require an
ANSI terminal be connected to the DRT900 serial coprocessor module. This program will allow
your PC to function as an ANSI terminal. TERM.EXE also has display modes for raw ASCII
and hexadecimal. These can be very useful when debugging serial communications. See
term.txt in the DOCS directory for more detailed information.

CC196.BAT
 This is a small DOS batch file that compiles a C source file using a standard set of
compiler options. It can be edited as needed for special applications. To use this batch file type:
cc196 xyz.c
The file should be compiled using Tasking’s C compiler and should generate xyz.obj.

LINK196.BAT
 This batch file and associated linker command file (rl.cmd) will link up to ten
compiled files using a standard set of libraries and options. The linker command file rl.cmd
found in the PCTOOLS directory is used to complete the linking. To use this batch file type:
link196 xxx.obj yyy.obj zzz.obj
This will use Tasking’s linker to link the supplied files and the standard libraries (including
Horner’s C tool kit) and generates xxx.abs and xxx.hex. If additional libraries are required
for linking, they can be passed as a command line option after the object files to link.

HEXCALC.EXE
 This small utility approximately calculates the number of bytes in EEPROM an Intel
HEX file will require. This can be very useful when trying to develop a large program that may
be on the verge of not fitting in the supplied EEPROM. To use this utility type:
hexcalc xyz.hex
This will calculate the number bytes needed to write xyz.hex to EEPROM and print this value to
the screen.

EMCPU.BAT
 See the following section on Chipview.

 37

HE693CPU100 "C" Tool Kit Manual __

Using the Chipview Debugger

Chipview is an interface for a DOS based personal computer to the built-in “ROM” debugger
(called RISM for Reduced Instruction Set Monitor) included with the CPU tool kit. This product
is produced by Chiptools and is available from Horner Electric for use with the HE693CPU100
slot one CPU. Included in the PCTOOLS directory is a small batch file named EMCPU.BAT
used to start Chipview for DOS using the correct parameters. For this batch file to work,
chipview must be included in your path or the batch file must be edited to included the full path
of the Chipview debugger.
EMCPU.BAT contains the following:

cvm196 -ac196CA -l -zb57600 -zd250 -zi- -zmh+ -zmr+ -d1 -zri-

Serial Communication Speed
Default is 57600, reduce if
problems occur

Chipview
executable

When Chipview or another utility sends RISM a “reset monitor” command the monitor clears an
EEPROM byte at location 202Fh. When the HE693CPU100 powers-up if byte 202Fh is clear it
will wait for debugger commands and will NOT run the user application. This is indicated by
the module status and network status LEDs turning orange. Chipview can be used to set byte
202Fh to FFh, this will allow the application to automatically run at the next power-up. The
easiest way to set this byte is to select VIEW DUMP, go to byte 202Fh and type “0FFh”. The
RLOAD.EXE utility will automatically set this byte after attempting a download.

When using Chipview, the HE693RSM232 RS-485 to RS-232 adapter must be used to connect
the PCs serial port to the RS-485 port on the power supply of the slot one CPU.

Connect the PC to the HE693CPU100 serial port on the power supply as follows:

GE Fanuc
Series 90-30

Com1 or 2

HE693RSM232

Personal
Computer

Power Supply

 38

HE693CPU100 "C" Tool Kit Manual __

RLOAD.EXE Hex File Loader

1. Connect the device that is to be updated to the PC's serial communication port. "Com1" or
"Com2" may be used.

GE Fanuc
Series 90-30

Com1 or 2

RS-232 to
RS-485

Personal
Computer

2. Type: rload xxxxx.HEX # bbbbb

Where:
 xxxxx.HEX is the name of the HEX file containing the firmware update to be
 loaded. If the file is not in the same directory as RLOAD.EXE the full path
 should be included. For example:
 RLOAD C:\UPDATES\HE12345.HEX

 # is the com port that the device is connected. (1 or 2 currently supported)

 bbbbb is the baud rate to communicate with the device. The CAN CPU will
 work up to 38400 baud. This value can be left out and 9600 will be used.

3. The update file will now be read and sent to the attached device. Each byte is verified as it is
written. If an error occurs, RLOAD will report where the error occurred and exit. If this occurs, try the
load process again from step 2. If RLOAD reports it could not get the device to respond, check the
cables, connections, and verify the correct com port is being used and repeat the process from step 2.
 Once the loading process starts the number of bytes successfully sent to the device will be
displayed on the screen. When the processes has successfully completed, "Done." should appear. The
new application will now begin to run.

 39

HE693CPU100 "C" Tool Kit Manual __

Sample 196 Slot One CPU Setup

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O

1 2 3 4 5

Series 90-30

1 2 3 4 5

ANSI

Terminal CPU
DRT900

Serial
Device

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O

90-30

I/O
DRT900

Serial
Device

Serial
Device

5 4 3

Series 90-30

1 2

90-30

I/O

CAN

CPU

Other
CAN

Devices

90-30

I/O

Series 90-30

90-30

I/O

90-30 Expansion
Rack (No CPU).

 40

HE693CPU100 "C" Tool Kit Manual __

Function Index

90-30 MODULE ACCESS FUNCTIONS 12
init_pif300() ... 13
auto_cfg() ... 14
get_cfg_file() .. 14
put_cfg_file().. 14
put_cfg_par() ... 15
get_init_file().. 16
put_init_file() ... 17
read_module() ... 17
write_module() .. 18
Table Name: rack_info .. 19
Table Name: module_info.. 19
Table Name: par_info .. 20
LED CONTROL FUNCTIONS 22
WORD run_on(void) .. 22
WORD run_off(void).. 22
WORD run_check(void)... 22
void ok_led(int stat) .. 22
void batt_led(int stat).. 22
void LedInit(void) ... 22
void SetLed(WORD led_command).. 22
VIRTUAL TIMER FUNCTIONS 23
TimerInit() ... 23
get_timebase().. 23
AllocateTimer() ... 23
ReleaseTimer() .. 24
StartTimer()... 24
StopTimer() ... 24
SetTimer().. 24
GetTimer() ... 24
SERIAL MODULE ACCESS FUNCTIONS 25
void com(int port) ... 25
int set_com_led(int value)... 25
int initcom(int slot, int baud, int param) .. 26
int scheckchar(void).. 26
int sgetchar(void) - getch() ... 26
int sputchar(void) - putch() .. 26
REAL TIME CLOCK ACCESS FUNCTIONS 27
time_t time(time_t *timer) ... 27
time_t uptime(void)... 27
int stime(time_t new_time)... 27
HAL300 CAN APPLICATION LAYER FUNCTIONS 28

 41

HE693CPU100 "C" Tool Kit Manual __

 42

void HalInit (BYTE node_id, BYTE baud_rate) .. 28
void Hal (void).. 28
BOOL HalPutCommand (BYTE node_id, BYTE function, WORD count, BYTE *data)............. 28
BOOL HalPutResponse (BYTE node_id, BYTE function, WORD count, BYTE *data)............... 28
BOOL HalPutDataReq (BYTE node_id, BYTE type) ... 28
BOOL HalPutData (BYTE type, BYTE count, BYTE *data)... 28
void HalGotCommand (BYTE node_id, BYTE function, WORD count, BYTE *data)................. 29
void HalGotResponse (BYTE node_id, BYTE function, WORD count, BYTE *data)................... 29
void HalGotDataReq (BYTE type) .. 29
void HalGotData (BYTE node_id, BYTE type, BYTE count, BYTE *data) 29
HE200 CAN APPLICATION LAYER FUNCTIONS 1

HE200 CAN APPLICATION LAYER FUNCTIONS 30
He200Init()... 30
network_send().. 30
network_request() ... 30
Variable: WORD network_data[254] ... 30
Variable: BYTE network_requested... 30
Variable: BYTE can_off_detected... 30
Variable: BYTE connect_id ... 31
Variable: BYTE remote_mode .. 31
chknet() .. 31
getnet() ... 31
putnet()... 31
putnet_buf() ... 31
flushnet() .. 31
EEPROM WRITE FUNCTION 32
void nv_write(BYTE *dst, BYTE *src, WORD length) .. 32
TTL I/O FUNCTIONS 33
init_ttl_in() ... 33
read_ttl_port() ... 33
init_ttl_out()... 33
write_ttl_port() .. 33

