High Speed +/-10V Analog Input Module Product Specifications and Installation Data
The Horner Electric High Speed +/-10V Analog Input Module provides eight single ended or four differential analog input channels, with 16-bits of resolution. The HE693ADC816 has 500VDC backplane isolation. This module converts the voltage input signals into digital values ($-32,000$ to $+32,000$), which are placed directly into the $\%$ Al table of the PLC CPU. Each of the eight channels has a programmable setpoint, the level of which is set in the PLC program via \%AQ output registers. If the analog input value reaches or exceeds the setpoint, a corresponding digital input \%/ is energized.

Front View, Door Closed

Front View, Door Open

Side View

ADC81 6.DWG

Specification		Specification	
Power Consumption, Typical	$230 \mathrm{mA@} @ \mathrm{VDC}(440 \mathrm{~mA}$ inrush)	Analog Filtering	Digital Filtering
Number of Channels	8 single ended 4 differential	$8 \% \mathrm{Al}, 8 \% \mathrm{AQ}, 16 \% 1$	Maximum Error
I/O Required	+/- 10V	Maximum Input Voltage	$1-128$ samples/update
Input Range	Successive Approx.16 bits	Backplane Isolation	$.04 \%$ full scale
A/D Type, Resolution	16 bits	Common Mode Rejection	75 VDC
Useable Resolution	300 channels/S, No Filtering $*(S e e ~ I n s t a l l a t i o n ~ H i n t s) ~$	Operating Temperature	500 VDC
Sample Rate	1 Megohm	Relative Humidity	$>100 \mathrm{~dB}$
Input Impedence		0 to $60^{\circ} \mathrm{C}$	

Foreign Module Configuration. To reach this screen, select I/O Configuration (F1), cursor over to the slot containing the module and select Other (F8), and Foreign (F3).

I/O Description			
	Channel	$\begin{aligned} & \text { Setpoint } \\ & \text { Bit } \end{aligned}$	Setpoint
	1	\%l1	\%AQ1
N	2	\%12	\%AQ2
L	3	\%13	\%AQ3
	4	\% 14	\%AQ4
N	5	\% 15	\%AQ5
E	6	\%16	\%AQ6
	7	\% 17	\%AQ7
	8	\%18	\%AQ8
D	Channel	Setpoint Bit	Setpoint
E	1/2	\% 11	\%AQ1
E	3/4	\%13	\%AQ3
T	5/6	\%15	\%AQ5
A	7/8	\%17	\%AQ7

Digital Filtering. The effect of digital filtering (set with Byte 2) on module response to a voltage change. (\% voltage change completed vs. time in milliseconds).

\%I Size	\%AI Size	\%AQ Size	Byte 1	Byte 2	Bytes 3-6
16	8	8	0001	0000 thru 0111 (see chart)	0=Single Ended 1=Differential

Configuration Parameters. The nine necessary parameters are \%I Size, \%AI Size, \%AQ Size, and Bytes 1 through 6.

Scaling	Smallest Step Change
Volts $=\% \mathrm{AI} / 32,000 \times 10$	$1(\mathrm{dec})=0.3125 \mathrm{mV}$

Scaling. The module converts each analog voltage into a decimal value between +/-32,000. Each bit is significant, therefore the smallest decimal step change is 1 .

Single Ended		Differential	
Reference	Description	Reference	Description
\%AI1	Input Value of Channel 1	\%AI1	Difference Between Channel 1 and 2
\%AI2	Input Value of Channel 2	\%AI2	Average of Channel 1 and 2
\%AI3	Input Value of Channel 3	\%AI3	Difference Between Channel 3 and 4
\%AI4	Input Value of Channel 4	\%AI4	Average of Channel 3 and 4
\%AI5	Input Value of Channel 5	\%AI5	Difference Between Channel 5 and 6
\%AI6	Input Value of Channel 6	\%AI6	Average of Channel 5 and 6
\%AI7	Input Value of Channel 7	\%AI7	Difference Between Channel 7 and 8
\%AI8	Input Value of Channel 8	\%AI8	Average of Channel 7 and 8

Input Description. When configured as a single ended input, each channel reports the analog value in the appropriate \%Al register. When configured as a differential input, the odd numbered \%Als report the difference between the two channels and the even numbered \%Als report the average between the two channels.

Installation Hints

V Wiring should be routed in its own conduit.

『 Shielded, twisted pair extension wiring offers best noise immunity.
\square If shielded wiring is used, a good earth ground connection is critical. If shields are connected at the module end, terminals 19 and 20 should be used as the shield ground point.

च 3000 channels/S is acheived if there are 2 or more modules present in the rack. With the HE693ADC816 in the rack alone or using the DO/IO command, the Sample Rate is 2700 channels/S.

Single Ended Wiring

Differential Wiring

