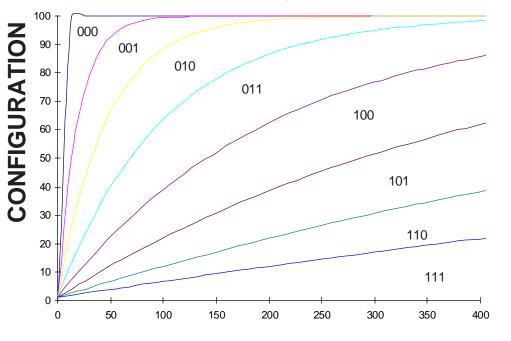

High Speed +/- 10V HORNER Analog Input Module Product Specifications and Installation Data


The Horner Electric High Speed +/-10V Analog Input Module provides eight single ended or four differential analog input channels, with 16-bits of resolution. The HE693ADC816 has 500VDC backplane isolation. This module converts the voltage input signals into digital values (-32,000 to +32,000), which are placed directly into the %AI table of the PLC CPU. Each of the eight channels has a programmable setpoint, the level of which is set in the PLC program via %AQ output registers. If the analog input value reaches or exceeds the setpoint, a corresponding digital input %I is energized.

Power Consumption, Typical	230mA@5VDC (440mA inrush)	Analog Filtering	1.6KHz low pass
Number of Channels	8 single ended 4 differential	Digital Filtering	1-128 samples/update
I/O Required	8 %AI, 8 %AQ, 16%I	Maximum Error	.04% full scale
Input Range	+/- 10V	Maximum Input Voltage	75VDC
A/D Type, Resolution	Successive Approx.16 bits	Backplane Isolation	500VDC
Useable Resolution	16 bits	Common Mode Rejection	>100dB
Sample Rate	3000 channels/S, No Filtering *(See Installation Hints)	Operating Temperature	0 to 60°C
Input Impedence	1 Megohm	Relative Humidity	5% to 95%, non-condensing

RACK 1pcm	 2hsc 3frgn	 401	 5apm 6:	 iolink 7 <mark>iop</mark>	8	10 10
> s	ERIES 90-30 MOI	ULE IN RA		2 GURATION		
SLOT 2	Catalog #: <u>R</u>		I	FOREIGN MOI	ULE	
FRGN	Module ID : %I Ref Adr :	3 %10001	Byte 1	: 00000001	Byte 9	: 00
	×I Size : ×Q Ref Adr :	16	Byte 2 Byte 3	: 00000100 : 00	Byte 10 Byte 11	- 00 - 00
	%Q Size : %AI Ref Adr:	0 % A I 0001	Byte 4 Byte 5	: 00 : 00	Byte 12 Byte 13	: 00 : 00
	XAI Size : XAQ Ref Adr:		Byte 6 Byte 7	: 00 : 00	Byte 14 Byte 15	: 00 : 00
	%AQ Size :	8	Byte 8	: 00	Byte 16	: 00

Foreign Module Configuration. To reach this screen, select I/O Configuration (F1), cursor over to the slot containing the module and select Other (F8), and Foreign (F3).

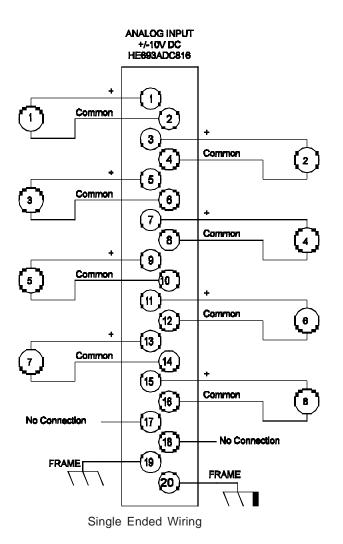
I/O Description				
	Channel	Setpoint Bit	Setpoint	
s I	1	%l1	%AQ1	
ר N G	2	%l2	%AQ2	
L	3	%I3	%AQ3	
	4	%14	%AQ4	
E N D	5	%15	%AQ5	
D E D	6	%l6	%AQ6	
	7	%17	%AQ7	
	8	%18	%AQ8	
ЪГГ	Channel	Setpoint Bit	Setpoint	
F E R E N T I A L	1/2	%I1	%AQ1	
	3/4	%13	%AQ3	
	5/6	%15	%AQ5	
	7/8	%17	%AQ7	

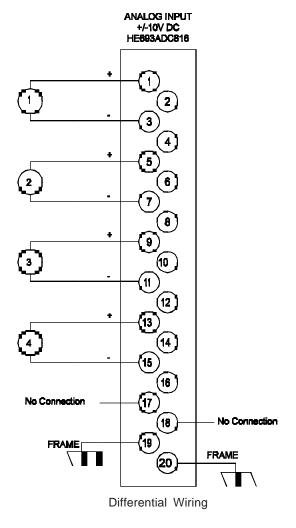
Digital Filtering. The effect of digital filtering (set with Byte 2) on module response to a voltage change. (% voltage change completed vs. time in milliseconds).

%I Size	%AI Size	%AQ Size	Byte 1	Byte 2	Bytes 3-6
16	8	8	0001	0000 thru 0111 (see chart)	0=Single Ended 1=Differential

	Scaling	Smallest Step Change
Volts =	= %AI / 32,000 x 10	1 (dec) = 0.3125mV

Configuration Parameters. The nine necessary parameters are %I Size, %AI Size, %AQ Size, and Bytes 1 through 6.


Scaling. The module converts each analog voltage into a decimal value between +/-32,000. Each bit is significant, therefore the smallest decimal step change is 1.


Single Ended		Differential		
Reference	Description	Reference	Description	
%Al1	Input Value of Channel 1	%Al1	Difference Between Channel 1 and 2	
%AI2	Input Value of Channel 2	%AI2	Average of Channel 1 and 2	
%AI3	Input Value of Channel 3	%AI3	Difference Between Channel 3 and 4	
%AI4	Input Value of Channel 4	%AI4	Average of Channel 3 and 4	
%AI5	Input Value of Channel 5	%AI5	Difference Between Channel 5 and 6	
%AI6	Input Value of Channel 6	%AI6	Average of Channel 5 and 6	
%AI7	Input Value of Channel 7	%AI7	Difference Between Channel 7 and 8	
%Al8	Input Value of Channel 8	%AI8	Average of Channel 7 and 8	

Input Description. When configured as a single ended input, each channel reports the analog value in the appropriate %AI register. When configured as a differential input, the odd numbered %AIs report the difference between the two channels and the even numbered %AIs report the average between the two channels.

Installation Hints

- ☑ Wiring should be routed in its own conduit.
- ☑ Shielded, twisted pair extension wiring offers best noise immunity.
- If shielded wiring is used, a good earth ground connection is critical.
 If shields are connected at the module end, terminals 19 and 20 should be used as the shield ground point.
- ☑ 3000 channels/S is acheived if there are 2 or more modules present in the rack. With the HE693ADC816 in the rack alone or using the DO/IO command, the Sample Rate is 2700 channels/S.

WIRING/INSTALLATION