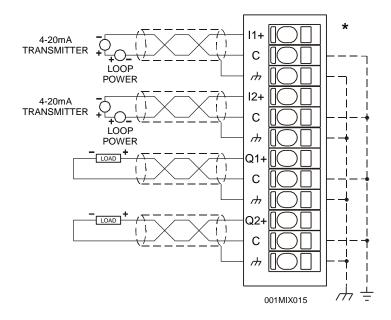
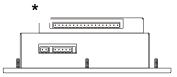


4-20mA Analog Input / Output Module HE800MIX126 / HE-MIX126*

12-Bit Resolution * HE- denotes plastic case.

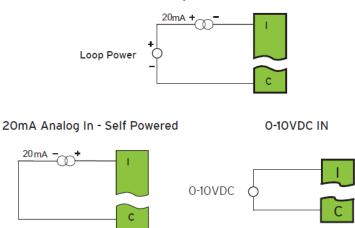

This datasheet also covers products starting with IC300.

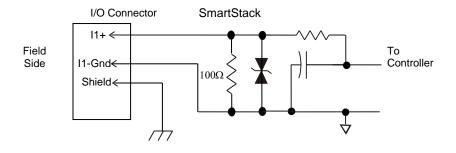

1 **SPECIFICATIONS**

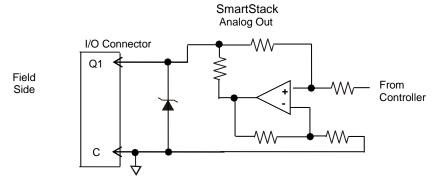
INPUT	MIX126		MIX126
Number of Channels	2	Analog Inputs Input Points Required	2
Input Range (including over-range)	Nominal: ±0 to 20.47mA, Optional: ±20.47mA.	Input Current	0 to 20.47mA
Resolution	12-Bit	Conversion Time (PLC Update Rate)	Set by PLC Scan Time
Input Impedance	100 Ohm < 12VDC, Clamped @ 12VDC, 35mA Max. Continuous	Converter Type	Successive Approximation
Maximum Error at 25°C	0.3%	Additional error for temperatures other than 25°C	0.01% / °C
Maximum Over- Current	35mA	External Power Supply	None
ANALOG OUTPUT	MIX126		MIX126
Number of Channels	2	Analog Outputs; Output Points Required	2
Output Range (including over-range)	0 to 20.47mA; 10VDC Compliance	Additional error at temperatures other than 25°C	0.01% / °C
Resolution	12 Bits	Maximum Error at 25°C	0.1% of FS
Max. Output Voltage	10 VDC	Maximum Loop Resistance @ 20mA	500 Ohms

GENERAL SPECIFICATIONS				
	MIX126		MIX126	
Required Power (Steady State)	2.64W (110mA @24VDC)	Relative Humidity	5 to 95% Non-condensing	
Required Power (Inrush)	Negligible	Terminal Type	Spring Clamp, Removable	
Operating Temperature	0° to 60° Celsius	Weight	9.5 oz. (270 g)	
CE	USA: www.hornerautomation.com			
UL	Europe: www.hornerautomation.eu			

2 WIRING




OCS Bottom View - Shows Corresponding I/O Pin


Pin	Signal	
PIII	MIX126	
l1+	Channel 1+	
C	Common	
\rightarrow	Shield	
12+	Channel 2+	
C	Common	
+	Shield	
Q1+	Channel 1+	
C	Common	
	Shield	
Q2+	Channel 2+	
С	Common	
/// Shield		

20mA Analog In - Not Self Powered

3 INTERNAL CIRCUIT SCHEMATIC

Specification for transient voltage suppressors (transorbs) used on output circuitry is 15V, 300W.

4 CONFIGURATION

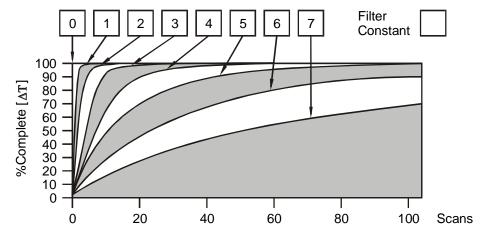
Note: The status of the I/O can be monitored in Cscape Software.

Preliminary configuration procedures that apply to SmartStack™ Modules are contained in the hardware manual of the controller you are using. Refer to the **Additional References** section in this data sheet for a listing of hardware manuals.

I/O Map Tab

The I/O Map describes which I/O registers are assigned to a specific SmartStack™ Module and where the module is located in the point map. The I/O Map is determined by the model number and location within the SmartStack™. The I/O Map is not edited by the user.

Module Setup Tab


The **Module Setup** is used in applications where it is necessary to change the default states or values of the outputs when the controller (e.g., OCS100) enters idle/stop mode.

1. For Analog Outputs: The default sets the output values to zero when the controller enters idle/stop mode. By selecting the Module Setup tab, each output can be set to a specific value or hold the last value. Generally, most applications use the default settings.

Warning: The default sets the output values to zero when the controller enters idle/stop mode. To avoid injury of personnel or damages to equipment, exercise extreme caution when changing the default setting using the **Module Setup** tab.

2. Analog Inputs:

- a. Input and output range for each channel can be selected independently.
- b. Filter Constant sets the level of digital filtering according to the following chart.

Digital Filtering. The illustration above demonstrates the effect of digital filtering (set with Filter Constant) on module response to a temperature change.

5 INPUT CONVERSION FACTOR

The following table describes how real-world inputs are scaled into the controller. Given a known input current, the data value is configured by using the conversion factor from the table. The following formula is used: **Data = Input Current (mA)** / **Conversion Factor**

Example: The user selects a current range of 0 to +20mA:

- 1. The known input current is 14mA.
- 2. Using the table, the conversion factor for the current range of 0 to +20mA is 0.000625.
- 3. To determine the data value, the formula is used:

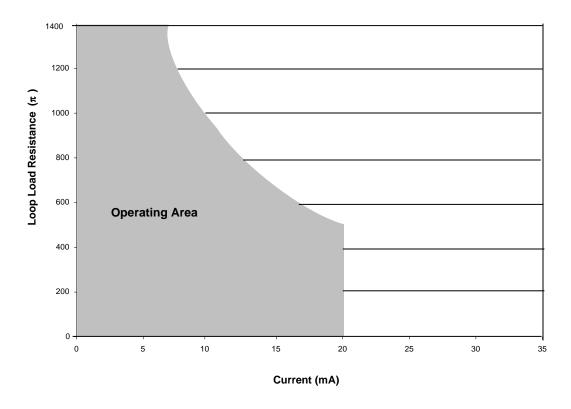
Data = Input Current (mA) / Conversion Factor 22400 = 14mA / 0.000625

Conversion of Real-World Inputs into Controller				
Selected Current Range	Input Current (mA)	Data	Conversion Factor	
	+20.47	32752	0.000625	
0 to +20mA	+20.00	32000		
	0	0		
-20 to +20mA	-20.00	-32000	0.000625	
-20 to +20MA	-20.47	-32752		

6 OUTPUT CHARACTERISTICS

6.1 Output Conversion Factor

The following table describes how program data values are scaled to real-world analog voltage outputs by the module. Given a desired output current, the data value is converted by using the conversion factor from the table. The following formula is used: **Data = Output Current (mA)** / **Conversion Factor**


Example: The user selects a current range of +20mA:

- 1. The desired output current is 12mA.
- 2. Using the table, the conversion factor for the current range of +20 mA is 0.000625.
- 3. To determine the data value, the formula is used:

Data = Output Current (mA) / Conversion Factor 19200 = 12mA / 0.000625

Conversion of Real-World Outputs into Controller				
Selected Current Range	Output Current (mA)	Data	Conversion Factor	
	+20.47	32752	0.000625	
0 to +20mA	+20.00	32000		
	0	0		

6.2 Operating Areas

7 INSTALLATION / SAFETY

Warning: Remove power from the OCS controller, CAN port, and any peripheral equipment connected to this local system before adding or replacing this or any module.

- a. All applicable codes and standards are to be followed in the installation of this product.
- b. Use the following wire type or equivalent: Belden 8917, 16 AWG or larger.
- c. Shielded, twisted-pair wiring should be used for best performance.
- d. Shields may be terminated at the module terminal strip.
- e. In severe applications, shields should be tied directly to the ground block within the panel.

For detailed installation and a <u>handy checklist</u> that covers panel box layout requirements and minimum clearances, refer to the hardware manual of the controller you are using. (See the **Additional References** section in this document.)

When found on the product, the following symbols specify:

Warning: Consult user documentation.

Warning: Electrical Shock Hazard.

8 TECHNICAL SUPPORT

For assistance and manual up-dates, contact Technical Support at the following locations:

North America:

(317) 916-4274

http://www.hornerautomation.com

Europe:

(+) 353-21-4321-266

http://www.hornerautomation.eu